
BEA
 WebLogic
Server™

Assembling and
Configuring Web
Applications
Release 7.0
Document Revised: April 2004

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Assembling and Configuring Web Applications

Part Number Document Revised Software Version

N/A August 20, 2002 BEA WebLogic Server
Version 7.0

Contents

About This Document
Audience..x
e-docs Web Site...x
How to Print the Document...x
Related Information... xi
Contact Us!.. xi
Documentation Conventions .. xii

1. Web Applications Basics
Overview of Web Applications ... 1-1

Servlets ... 1-2
JavaServer Pages .. 1-2
Web Application Directory Structure .. 1-3

Main Steps to Create a Web Application .. 1-3
Directory Structure .. 1-5
URLs and Web Applications... 1-6
Web Application Developer Tools.. 1-7

WebLogic Builder .. 1-7
Ant Tasks to Create Skeleton Deployment Descriptors............................. 1-7
Web Application Deployment Descriptor Editor....................................... 1-8
BEA XML Editor ... 1-8

2. Deploying Web Applications
Redeploying a Web Application Using Auto-Deployment............................... 2-2

Redeploying a Web Application in a WAR Archive 2-2
Redeploying a Web Application in Exploded Directory Format............... 2-2

Touching the REDEPLOY File .. 2-2
Assembling and Configuring Web Applications iii

Redeploying with the Administration Console 2-3
Hot-Deployment.. 2-3

Requirements for Redeploying a Web Application in Production Mode.......... 2-4
Refreshing Static Components (JSP Files, HTML Files, Image Files, Etc.)..... 2-5
Deploying Web Applications as Part of an Enterprise Application 2-6

3. Configuring Web Application Components
Configuring Servlets.. 3-2

Servlet Mapping ... 3-2
Servlet Initialization Parameters... 3-4

Configuring JSP... 3-5
Configuring JSP Tag Libraries .. 3-6
Configuring Welcome Pages ... 3-7
Setting Up a Default Servlet .. 3-8
Customizing HTTP Error Responses .. 3-9
Using CGI with WebLogic Server .. 3-9

Configuring WebLogic Server to Use CGI .. 3-10
Requesting a CGI Script... 3-11

Serving Resources from the CLASSPATH with the ClasspathServlet 3-12
Configuring Resources in a Web Application ... 3-12

Configuring External Resources... 3-13
Configuring Application-Scoped Resources .. 3-14

Referencing EJBs in a Web Application ... 3-15
Referencing External EJBs... 3-15
Referencing Application-Scoped EJBs .. 3-16

Determining the Encoding of an HTTP Request... 3-19
Mapping IANA Character Sets to Java Character Sets 3-20

4. Using Sessions and Session Persistence in Web Applications
Overview of HTTP Sessions ... 4-1
Setting Up Session Management .. 4-2

HTTP Session Properties.. 4-2
Session Timeout ... 4-3
Configuring Session Cookies ... 4-3
Using Cookies That Outlive a Session ... 4-3
iv Assembling and Configuring Web Applications

Logging Out and Ending a Session .. 4-4
Configuring Session Persistence ... 4-4

Common Properties of Session Attributes ... 4-5
Using Memory-based, Single-server, Non-replicated Persistent Storage .. 4-6
Using File-based Persistent Storage .. 4-6
Using a Database for Persistent Storage (JDBC persistence) 4-7
Using Cookie-Based Session Persistence .. 4-9

Using URL Rewriting.. 4-10
Coding Guidelines for URL Rewriting .. 4-11
URL Rewriting and Wireless Access Protocol (WAP) 4-11

5. Configuring Security in Web Applications
Overview of Configuring Security in Web Applications 5-1
Setting Up Authentication for Web Applications ... 5-2
Multiple Web Applications, Cookies, and Authentication................................ 5-4
Restricting Access to Resources in a Web Application 5-5
Using Users and Roles Programmatically in Servlets 5-6

6. Application Events and Listeners
Overview of Application Events and Listeners... 6-1
Servlet Context Events .. 6-2
HTTP Session Events .. 6-3
Configuring an Event Listener .. 6-3
Writing a Listener Class .. 6-4
Templates for Listener Classes.. 6-5

Servlet Context Listener Example.. 6-5
HTTP Session Attribute Listener Example.. 6-6

Additional Resources... 6-7

7. Filters
Overview of Filters.. 7-1

How Filters Work... 7-2
Uses for Filters ... 7-2

Configuring Filters .. 7-3
Configuring a Filter .. 7-3
Configuring a Chain of Filters ... 7-5
Assembling and Configuring Web Applications v

Writing a Filter .. 7-5
Example of a Filter Class... 7-7
Filtering the Servlet Response Object ... 7-8
Additional Resources... 7-8

8. Writing Web Application Deployment Descriptors
Overview of Web Application Deployment Descriptors................................... 8-2
Tools for Editing Deployment Descriptors ... 8-2
Writing the web.xml Deployment Descriptor .. 8-3

Main Steps to Create the web.xml File .. 8-3
Detailed Steps to Create the web.xml File ... 8-5

Sample web.xml .. 8-21
Writing the WebLogic-Specific Deployment Descriptor (weblogic.xml) 8-23

Main Steps to Create the weblogic.xml File .. 8-23
Detailed Steps to Create the weblogic.xml File 8-24

A. web.xml Deployment Descriptor Elements
icon ... A-2
display-name... A-3
description .. A-3
distributable .. A-3
context-param ... A-4
filter .. A-5
filter-mapping ... A-6
listener .. A-7
servlet.. A-7

icon .. A-8
init-param .. A-9
security-role-ref ... A-10

servlet-mapping .. A-11
session-config ... A-11
mime-mapping.. A-12
welcome-file-list ... A-13
error-page.. A-13
taglib ... A-14
vi Assembling and Configuring Web Applications

resource-env-ref.. A-15
resource-ref... A-16
security-constraint .. A-17

web-resource-collection .. A-17
auth-constraint ... A-18
user-data-constraint ... A-19

login-config .. A-21
form-login-config .. A-22

security-role.. A-22
env-entry... A-23
ejb-ref ... A-23
...ejb-local-refA-24

B. weblogic.xml Deployment Descriptor Elements
description ...B-2
weblogic-version ...B-2
security-role-assignment..B-2
reference-descriptor...B-3

resource-description ...B-4
ejb-reference-description..B-4

session-descriptor ..B-4
session-param ...B-5

jsp-descriptor ...B-11
JSP Parameter Names and Values..B-11

auth-filter ...B-13
container-descriptor...B-14

check-auth-on-forward ...B-14
redirect-content-type ..B-14
redirect-content...B-14
redirect-with-absolute-url...B-15

charset-params...B-15
input-charset ...B-15
charset-mapping ...B-16

virtual-directory-mapping..B-16
url-match-map ...B-17
Assembling and Configuring Web Applications vii

preprocessor.. B-18
preprocessor-mapping .. B-18
security-permission... B-19
context-root... B-20
init-as .. B-21
destroy-as.. B-21
viii Assembling and Configuring Web Applications

About This Document

This document describes how to assemble and configure J2EE Web Applications.

The document is organized as follows:

Chapter 1, “Web Applications Basics,” is an overview of using Web
Applications in WebLogic Server.

Chapter 2, “Deploying Web Applications,”describes how to deploy a Web
Application on WebLogic Server.

Chapter 3, “Configuring Web Application Components,”describes how to
configure Web Application components.

Chapter 4, “Using Sessions and Session Persistence in Web Applications,”
describes how to use HTTP sessions and session persistence in a Web
Application.

Chapter 5, “Configuring Security in Web Applications,” describes how to
configure authentication and authorization in a Web Application.

Chapter 6, “Application Events and Listeners,” describes how to use J2EE event
listeners in a Web Application.

Chapter 7, “Filters,”describes how to use filters in a Web Application.

Chapter 8, “Writing Web Application Deployment Descriptors,” describes how
to write Web Application deployment descriptors manually.

Appendix A, “web.xml Deployment Descriptor Elements,” provides a reference
of deployment descriptor elements for the web.xml deployment descriptor.

Appendix B, “weblogic.xml Deployment Descriptor Elements,” provides a
reference of deployment descriptor elements for the weblogic.xml deployment
descriptor.
Assembling and Configuring Web Applications ix

Audience

This document is written for application developers who want to build e-commerce
applications using the Java 2 Platform, Enterprise Edition (J2EE) from Sun
Microsystems. It is assumed that readers know Web technologies, object-oriented
programming techniques, and the Java programming language.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.
x Assembling and Configuring Web Applications

http://www.adobe.com

Related Information

The BEA corporate Web site provides all documentation for WebLogic Server. The
following WebLogic Server documents contain information that is relevant to creating
WebLogic Server application components:

Programming WebLogic HTTP Servlets at
http://e-docs.bea.com/wls/docs70/servlet/index.html.

Programming WebLogic JSP at
http://e-docs.bea.com/wls/docs70/jsp/index.html.

Programming WebLogic Web Services at
http://e-docs.bea.com/wls/docs70/webServices/index.html.

Developing WebLogic Server Applications at
http://e-docs.bea.com/wls/docs70/programming/index.html.

For more information in general about Java application development, refer to the Sun
Microsystems, Inc. Java 2, Enterprise Edition Web Site at
http://java.sun.com/products/j2ee/.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:
Assembling and Configuring Web Applications xi

http://e-docs.bea.com/wls/docs70/servlet/index.html
http://e-docs.bea.com/wls/docs70/jsp/index.html
http://e-docs.bea.com/wls/docs70/webServices/index.html
http://e-docs.bea.com/wls/docs70/programming/index.html
http://java.sun.com/products/j2ee/
mailto:docsupport@bea.com
http://www.bea.com

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.
Examples:
import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.
Example:
String CustomerName;
xii Assembling and Configuring Web Applications

UPPERCASE
TEXT

Device names, environment variables, and logical operators.
Examples:
LPT1
BEA_HOME
OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:
An argument can be repeated several times in the command line.
The statement omits additional optional arguments.
You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
Assembling and Configuring Web Applications xiii

xiv Assembling and Configuring Web Applications

CHAPTER
1 Web Applications
Basics

The following sections describe how to configure and deploy Web Applications:

“Overview of Web Applications” on page 1-1

“Main Steps to Create a Web Application” on page 1-3

“Directory Structure” on page 1-5

“URLs and Web Applications” on page 1-6

“Web Application Developer Tools” on page 1-7

Overview of Web Applications

A Web Application contains an application’s resources, such as servlets, JavaServer
Pages (JSPs), JSP tag libraries, and any static resources such as HTML pages and
image files. A Web Application can also define links to outside resources such as
Enterprise JavaBeans (EJBs). Web Applications deployed on WebLogic Server use a
standard J2EE deployment descriptor file and a WebLogic-specific deployment
descriptor file to define their resources and operating parameters.

JSPs and HTTP servlets can access all services and APIs available in WebLogic
Server. These services include EJBs, database connections via Java Database
Connectivity (JDBC), JavaMessaging Service (JMS), XML, and more.
Assembling and Configuring Web Applications 1-1

1 Web Applications Basics
A Web archive contains the files that make up a Web Application (WAR file). A WAR
file is deployed as a unit on one or more WebLogic Servers.

A Web archive on WebLogic Server always includes the following files:

At least one servlet or JSP page, along with any helper classes.

A web.xml deployment descriptor, a J2EE standard XML document that
describes the contents of a WAR file.

A weblogic.xml deployment descriptor, an XML document containing
WebLogic Server-specific elements for Web applications.

A Web archive may also include HTML/XML pages and supporting files such as
image and multimedia files.

The WAR file can be deployed alone or packaged in an Enterprise Archive (EAR file)
with other application components. If deployed alone, the archive must end with a
.war extension. If deployed in an EAR file, the archive must end with an .ear
extension. (Note: If you are deploying an entire directory, do not name the directory
.ear, .war, .jar and so on.)

Servlets

Servlets are Java classes that execute in WebLogic Server, accept a request from a
client, process it, and optionally return a response to the client. A GenericServlet is
protocol independent and can be used in J2EE applications to implement services
accessed from other Java classes. An HttpServlet extends GenericServlet with support
for the HTTP protocol. An HttpServlet is most often used to generate dynamic Web
pages in response to Web browser requests.

JavaServer Pages

JSP pages are Web pages coded with an extended HTML that makes it possible to
embed Java code in a Web page. JSP pages can call custom Java classes, called taglibs,
using HTML-like tags. The WebLogic JSP compiler, weblogic.jspc, translates
JSP pages into servlets. WebLogic Server automatically compiles JSP pages if the
servlet class file is not present or is older than the JSP source file.
1-2 Assembling and Configuring Web Applications

Main Steps to Create a Web Application
You can also precompile JSP pages and package the servlet class in the Web Archive
to avoid compiling in the server. Servlets and JSP pages may depend upon additional
helper classes that must also be deployed with the Web Application.

Web Application Directory Structure

Web Applications use a standard directory structure defined in the J2EE specification,
and can be deployed as a collection of files that use this directory structure (this type
of deployment is called exploded directory format) or as an archived file called a WAR
file. Deploying a Web Application in exploded directory format is recommended
primarily for use while developing your application. Deploying a Web Application as
a WAR file is recommended primarily for production environments.

Web Application components are assembled in a directory in order to stage the WAR
file for the jar command. HTML pages, JSP pages, and the non-Java class files they
reference are accessed beginning in the top level of the staging directory.

The XML descriptors, compiled Java classes and JSP taglibs are stored in a WEB-INF
subdirectory at the top level of the staging directory. Java classes include servlets,
helper classes and, if desired, precompiled JSP pages.

The entire directory, once staged, is bundled into a WAR file using the jar command.
The WAR file can be deployed alone or packaged in an Enterprise Archive (EAR file)
with other application components, including other Web Applications, EJB
components, and WebLogic components.

JSP pages and HTTP servlets can access all services and APIs available in WebLogic
Server. These services include EJBs, database connections through Java Database
Connectivity (JDBC), JavaMessaging Service (JMS), XML, and more.

Main Steps to Create a Web Application

The following steps summarize the procedure for creating a Web Application. You
may want to use developer tools included with WebLogic Server for creating and
configuring Web Applications. For more information, see “Web Application
Developer Tools” on page 1-7.
Assembling and Configuring Web Applications 1-3

1 Web Applications Basics
To create a Web Application:

1. Create the HTML pages and JSPs that make up the Web interface of the Web
application. Typically, Web designers create these parts of a Web application.

See Programming WebLogic JSP.

2. Write the Java code for the servlets and the JSP taglibs referenced in JavaServer
Pages (JSPs). Typically, Java programmers create these parts of a Web
application.

See Programming WebLogic HTTP Servlets.

3. Compile the servlets into class files.

See "Preparing to Compile" in Developing WebLogic Server J2EE Applications.

4. Arrange the resources (servlets, JSPs, static files, and deployment descriptors) in
the prescribed directory format. See “Directory Structure” on page 1-5.

5. Create the Web Application deployment descriptor (web.xml) and place the
descriptor in the WEB-INF directory of the Web Application. In this step you
register servlets, define servlet initialization parameters, register JSP tag libraries,
define security constraints, and define other Web Application parameters.

See “Writing the web.xml Deployment Descriptor” on page 8-3, and WebLogic
Builder.

You can edit Web Application deployment descriptors using various methods
(see “Tools for Editing Deployment Descriptors” on page 8-2).

6. Create the WebLogic-specific deployment descriptor (weblogic.xml) and place
the descriptor in the WEB-INF directory of the Web Application. In this step you
define how WebLogic Server will define JSP properties, JNDI mappings, security
role mappings, and HTTP session parameters.

See “Writing the WebLogic-Specific Deployment Descriptor (weblogic.xml)” on
page 8-23, and WebLogic Builder.

You can edit Web Application deployment descriptors using various methods
(see “Tools for Editing Deployment Descriptors” on page 8-2).

7. Archive the Web Application files into a WAR file. (During development you
may find it more convenient to update individual components of your Web
Application in exploded directory format.) Use this command from the root
directory of your Web Application:
1-4 Assembling and Configuring Web Applications

http://e-docs.bea.com/wls/docs70/jsp/index.html
http://e-docs.bea.com/wls/docs70/servlet/index.html
http://e-docs.bea.com/wls/docs70/programming/environment.html
http://e-docs.bea.com/wls/docs70/wlbuilder/index.html
http://e-docs.bea.com/wls/docs70/wlbuilder/index.html
http://e-docs.bea.com/wls/docs70/wlbuilder/index.html

Directory Structure
jar cv0f myWebApp.war .

This command creates a Web Application archive file called myWebApp.war.

8. If you are deploying the Web Application as part of an enterprise application,
bundle the WAR file into an Enterprise Application archive (EAR file). See
“Deploying Web Applications as Part of an Enterprise Application” on page 2-6

9. Deploy the Web Application or Enterprise Application on WebLogic Server. This
final step configures your application to service requests on WebLogic Server.
See “Deploying Web Applications” on page 2-1.

Directory Structure

Develop your Web Application within a specified directory structure so that it can be
archived and deployed on WebLogic Server or another J2EE-compliant server. All
servlets, classes, static files, and other resources belonging to a Web Application are
organized under a directory hierarchy. The root of this hierarchy defines the document
root of your Web Application. All files under this root directory can be served to the
client, except for files under the special directory WEB-INF, located under the root
directory. The name of your Web Application is used to resolve requests for
components of the Web Application.

Place private files in the WEB-INF directory, under the root directory. All files under
WEB-INF are private, and are not served to a client.

DefaultWebApp/
Place your static files, such as HTML files and JSP files in the directory that is
the document root of your Web Application. In the default installation of
WebLogic Server, this directory is called DefaultWebApp, under
user_domains/mydomain/applications.

DefaultWebApp/WEB-INF/web.xml
The Web Application deployment descriptor that configures the Web
Application.

DefaultWebApp/WEB-INF/weblogic.xml
The WebLogic-specific deployment descriptor file that defines how
named resources in the web.xml file are mapped to resources residing
Assembling and Configuring Web Applications 1-5

1 Web Applications Basics
elsewhere in WebLogic Server. This file is also used to define JSP and
HTTP session attributes.

DefaultWebApp/WEB-INF/classes
Contains server-side classes such as HTTP servlets and utility classes.

DefaultWebApp/WEB-INF/lib
Contains JAR files used by the Web Application, including JSP tag
libraries.

URLs and Web Applications

Construct the URL that a client uses to access a Web Application using the following
pattern:

http://hoststring/ContextPath/servletPath/pathInfo

Where

hoststring
is either a host name that is mapped to a virtual host or
hostname:portNumber.

ContextPath
is the context root of your Web Application, if one is specified in
application.xml or weblogic.xml. If the context root is not specified,
ContextPath is the name of the Web Application archive file (for example,
myWebApp.war) or the name of the directory in which the Web Application was
deployed.

servletPath
is a servlet that is mapped to the servletPath.

pathInfo
is the remaining portion of the URL, typically a file name.

If you are using virtual hosting, you can substitute the virtual host name for the
hoststring portion of the URL.

For additional information, see How WebLogic Server Resolves HTTP Requests at
http://e-docs.bea.com/wls/docs70/adminguide/web_server.html#resol
ve_http_req.
1-6 Assembling and Configuring Web Applications

http://e-docs.bea.com/wls/docs70/adminguide/web_server.html#resolve_http_req

Web Application Developer Tools
Web Application Developer Tools

BEA provides several tools you can use to help you create and configure Web
Applications.

WebLogic Builder

WebLogic Builder is a graphical tool for assembling a J2EE application module,
creating and editing its deployment descriptors, and deploying it to a WebLogic server.

WebLogic Builder provides a visual editing environment for editing an application’s
deployment descriptor XML files. You can view these XML files as you visually edit
them in WebLogic Builder, but you won’t need to make textual edits to the XML files.

Use WebLogic Builder to do the following development tasks:

Generate deployment descriptor files for a J2EE module

Edit a module’s deployment descriptor files

Compile and validate deployment descriptor files

Deploy a J2EE module to a server

See WebLogic Builder at
http://e-docs.bea.com/wls/docs70/wlbuilder/index.html.

Ant Tasks to Create Skeleton Deployment Descriptors

You can use the WebLogic Ant utilities to create skeleton deployment descriptors.
These utilities are Java classes shipped with your WebLogic Server distribution. The
Ant task looks at a directory containing a Web Application and creates deployment
descriptors based on the files it finds in the Web Application. Because the Ant utility
does not have information about all desired configurations and mappings for your Web
Application, the skeleton deployment descriptors the utility creates are incomplete.
Assembling and Configuring Web Applications 1-7

http://e-docs.bea.com/wls/docs70/wlbuilder/index.html

1 Web Applications Basics
After the utility creates the skeleton deployment descriptors, you can use a text editor,
an XML editor, or the Administration Console to edit the deployment descriptors and
complete the configuration of your Web Application.

For more information on using Ant utilities to create deployment descriptors, see
Packaging Web Applications at
http://e-docs.bea.com/wls/docs70/programming/packaging.html#pack0
05.

Web Application Deployment Descriptor Editor

The WebLogic Server Administration Console has an integrated deployment
descriptor editor. You must create at least a skeleton web.xml deployment descriptor
before using this integrated editor.

For more information, see Writing Web Application Deployment Descriptors at
http://e-docs.bea.com/wls/docs70/webapp/webappdeployment.html#100
6092 and Web Application Deployment Descriptor Editor Help at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/web_application_dde.
html.

BEA XML Editor

The BEA XML Editor can validate XML code according to a specified DTD or XML
Schema. It can be used on Windows or Solaris machines and is downloadable from
BEA’s Dev2Dev Online at
http://dev2dev.bea.com/resourcelibrary/utilitiestools/xml.jsp?highlight=utilitiestools.
1-8 Assembling and Configuring Web Applications

http://e-docs.bea.com/wls/docs70/programming/packaging.html#pack005
http://e-docs.bea.com/wls/docs70/webapp/webappdeployment.html#1006092
http://e-docs.bea.com/wls/docs70/ConsoleHelp/web_application_dde.html
http://dev2dev.bea.com/resourcelibrary/utilitiestools/xml.jsp?highlight=utilitiestools

CHAPTER
2 Deploying Web
Applications

WebLogic Server application deployment is covered in detail at WebLogic Server
Deployment at http://e-docs.bea.com/wls/docs70/programming/deploying.html. This
section explains only deployment procedures that are specific to Web Applications.

Deploying a Web Application enables WebLogic Server to serve the components of a
Web Application to clients. You can deploy a Web Application using one of several
procedures, depending on your environment and whether or not your Web Application
is in production. You can use the WebLogic Server Administration Console, the
weblogic.Deployer utility, or you can use auto-deployment.

In the procedures for deploying a Web Application, it is assumed that you have created
a functional Web Application that uses the correct directory structure and contains the
web.xml deployment descriptor and, if needed, the weblogic.xml deployment
descriptor. For an overview of the steps required to create a Web Application, see
“Main Steps to Create a Web Application” on page 1-3.

The following sections provide Web Application-specific information:

Redeploying a Web Application Using Auto-Deployment

Requirements for Redeploying a Web Application in Production Mode

Refreshing Static Components (JSP Files, HTML Files, Image Files, Etc.)

Deploying Web Applications as Part of an Enterprise Application
Assembling and Configuring Web Applications 2-1

http://e-docs.bea.com/wls/docs70/programming/deploying.html
http://e-docs.bea.com/wls/docs70/programming/deploying.html

2 Deploying Web Applications
Redeploying a Web Application Using
Auto-Deployment

When you modify a component of a Web Application (such as a JSP, HTML page, or
Java class) that is deployed in the applications directory and you are using
auto-deployment, the Web Application must be re-deployed in order for the changes
to become effective. The procedure is different for Web Applications deployed as
WARs and Web Applications deployed in exploded directory format.

Redeploying a Web Application in a WAR Archive

Modifying the archive file automatically triggers re-deployment of the Web
Application. If an auto-deployed Web Application is targeted to any Managed Servers,
the Web Application is also re-deployed on the Managed Servers.

Redeploying a Web Application in Exploded Directory
Format

You can redeploy a Web Application deployed in exploded directory format when
using auto-deployment by modifying a special file called REDEPLOY, or you can use
the Administration Console, or you can cause a partial redeploy by copying a new
version of a class file over an old in the WEB-INF/classes directory.

Touching the REDEPLOY File

To re-deploy a Web Application by modifying the REDEPLOY file:

1. Create an empty file called REDEPLOY and place it in the WEB-INF directory of your
Web Application. (You may have to create this directory.)
2-2 Assembling and Configuring Web Applications

Redeploying a Web Application Using Auto-Deployment
2. Modify the REDEPLOY file by opening it, modifying the contents (adding a space
character is the easiest way to do this), and then saving the file. Alternately, on
UNIX machines, you can use the touch command on the REDEPLOY file. For
example:

touch
user_domains/mydomain/applications/DefaultWebApp/WEB-INF/REDEPL
OY

As soon as the REDEPLOY file is modified, the Web Application is redeployed.

Redeploying with the Administration Console

To redeploy a Web Application using the Administration Console:

1. Expand the Deployments node in the left pane.

2. Select the Web Application node.

3. Select the Web Application you want to redeploy.

4. Click the Undeploy button in the application’s table in the right-hand pane.

5. Click the Deployed button in the application’s table in the right-hand pane.

Hot-Deployment

Redeploy files in the WEB-INF/classes directory in the following way. If a class is
deployed in WEB-INF/classes, then simply copying a new version of the file with a
later time stamp will cause the Web Application to reload everything in the
WEB-INF/classes folder with a new classloader.

The frequency in which WLS will look at the filesystem is governed through the
console. In the Deployments-->Web Applications tab, select your Web Application.
Go to the Configuration tab, and Files subtab, and enter a value in seconds for the
Reload Period.
Assembling and Configuring Web Applications 2-3

2 Deploying Web Applications
Requirements for Redeploying a Web
Application in Production Mode

To redeploy a Web Application with Production Mode enabled, you must start the
domain’s Administration Server with the
-Dweblogic.ProductionModeEnabled=true flag; this sets the production mode for
all server instances in the domain.

When you modify a component (for instance, a servlet, JSP, or HTML page) of a Web
Application on the Administration Server, you must take additional steps to refresh the
modified component so that it is also deployed on any targeted Managed Servers. One
way to refresh a component is to redeploy the entire Web Application. Redeploying
the Web Application means that the entire Web Application (not just the modified
component) is re-sent over the network to all of the Managed Servers targeted by that
Web Application.

Note the following regarding re-deployment of Web Applications:

Depending on your environment, there may be performance implications due to
increased network traffic when a Web Application is re-sent to the Managed
Servers.

If the Web Application is currently in production and in use, redeploying the
Web Application causes WebLogic Server to lose all active HTTP sessions for
current users of the Web Application.

If you have updated any Java class files, you must redeploy the entire Web
Application to refresh the class.

If you change the deployment descriptors, you must redeploy the Web
Application.
2-4 Assembling and Configuring Web Applications

Refreshing Static Components (JSP Files, HTML Files, Image Files, Etc.)
Refreshing Static Components (JSP Files,
HTML Files, Image Files, Etc.)

For applications deployed as exploded archive directories, weblogic.Deployer
can refresh static files in your deployed applications. To refresh a static file:

1. Set up your development environment so that WebLogic Server classes are in your
system CLASSPATH and the JDK is available. You can use the setEnv script located
in the config/mydomain directory to set your environment.

2. Enter the following command:

% java weblogic.Deployer -adminurl adminServerURL
-user adminUserName -password adminPassword -name deploymentName
-activate fileList

Where:

adminServerURL is the URL of your WebLogic Administration Server.

adminUserName is the username for the Admistrative user.

adminPassword is the password of the Administrtive user.

deploymentName is the name of the application being refreshed.

fileList is a comma-separated list of files to be refreshed. Wildcard
characters (*.jsp, for example) are not supported. Individual files must be
specified relative to the root directory of the exploded archive deployment.

For example, the following command refreshes the files HelloWorld.jsp in the
myWebApp Web Application:

java weblogic.Deployer -adminurl http://localhost:7001
 -username myUsername -password myPassword -name myWebApp
 -activate HelloWorld.jsp

For additional information about using weblogic.Deployer, see Using the
WebLogic Java Utilities at http://e-docs.bea.com/wls/docs70/adminguide/utils.html.
Assembling and Configuring Web Applications 2-5

http://e-docs.bea.com/wls/docs70/adminguide/utils.html
http://e-docs.bea.com/wls/docs70/adminguide/utils.html

2 Deploying Web Applications
Deploying Web Applications as Part of an
Enterprise Application

You can deploy a Web Application as part of an Enterprise Application. An Enterprise
Application is a J2EE deployment unit that bundles together Web Applications, EJBs,
and Resource Adaptors into a single deployable unit. (For more information on
Enterprise Applications, see Packaging Components and Applications at
http://e-docs.bea.com/wls/docs70/programming/packaging.html.) If you
deploy a Web Application as part of an Enterprise Application, you can specify a string
that is used in place of the actual name of the Web Application when WebLogic Server
resolves a request for the Web Application. You specify the new name with the
<context-root> element in the application.xml deployment descriptor for the
Enterprise Application. For more information, see application.xml Deployment
Descriptor Elements at
http://e-docs.bea.com/wls/docs70/programming/app_xml.html.

For example, for a Web Application called oranges, you would typically request a
resource from the oranges Web Application with a URL such as:

http://host:port/oranges/catalog.jsp.

If the oranges Web Application is packaged in an Enterprise Application, you specify
a value for the <context-root> as shown in the following example:

<module>
<web>

<web-uri>oranges.war</web-uri>
<context-root>fruit</context-root>

</web>
</module>

You then use the following URL to access the same resource from the oranges Web
Application:

http://host:port/fruit/catalog.jsp

Note: You cannot deploy the same Web Application under more than one name in
one Enterprise Application. You can, however, deploy the same Web
Application under more than one name if each Web Application is packaged
in a different Enterprise Application.
2-6 Assembling and Configuring Web Applications

http://e-docs.bea.com/wls/docs70/programming/packaging.html
http://e-docs.bea.com/wls/docs70/programming/app_xml.html
http://e-docs.bea.com/wls/docs70/programming/app_xml.html

CHAPTER
3 Configuring Web
Application
Components

The following sections describe how to configure Web Application components:

“Configuring Servlets” on page 3-2

“Configuring JSP” on page 3-5

“Configuring JSP Tag Libraries” on page 3-6

“Configuring Welcome Pages” on page 3-7

“Setting Up a Default Servlet” on page 3-8

“Customizing HTTP Error Responses” on page 3-9

“Using CGI with WebLogic Server” on page 3-9

“Serving Resources from the CLASSPATH with the ClasspathServlet” on page
3-12

“Configuring Resources in a Web Application” on page 3-12

“Referencing EJBs in a Web Application” on page 3-15

“Determining the Encoding of an HTTP Request” on page 3-19

“Mapping IANA Character Sets to Java Character Sets” on page 3-20
Assembling and Configuring Web Applications 3-1

3 Configuring Web Application Components
Configuring Servlets

Servlets are defined as a part of a Web Application in several entries in the Web
Application deployment descriptor. The first entry, under the <servlet> element,
defines a name for the servlet and specifies the compiled class that executes the servlet.
(Or, instead of specifying a servlet class, you can specify a JSP page.) This element
also contains definitions for initialization parameters and security roles for the servlet.
The second entry, under the <servlet-mapping> element, defines the URL pattern
that calls this servlet.

For complete instructions on editing the Web Application deployment descriptor, see:

“Step 9: Deploy Servlets” on page 8-9

“Step 10: Map a servlet to a URL” on page 8-12

Servlet Mapping

Servlet mapping controls how you access a servlet. The following examples
demonstrate how you can use servlet mapping in your Web Application. In the
examples, a set of servlet configurations and mappings (from the web.xml deployment
descriptor) is followed by a table (see “url-patterns and Servlet Invocation” on page
3-3) showing the URLs used to invoke these servlets.

Listing 3-1 Servlet Mapping Example

<servlet>
<servlet-name>watermelon</servlet-name>
<servlet-class>myservlets.watermelon</servlet-class>

</servlet>

<servlet>
<servlet-name>garden</servlet-name>
<servlet-class>myservlets.garden</servlet-class>

</servlet>

<servlet>
<servlet-name>list</servlet-name>
3-2 Assembling and Configuring Web Applications

Configuring Servlets
<servlet-class>myservlets.list</servlet-class>
</servlet>

<servlet>
<servlet-name>kiwi</servlet-name>
<servlet-class>myservlets.kiwi</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>watermelon</servlet-name>
<url-pattern>/fruit/summer/*</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>garden</servlet-name>
<url-pattern>/seeds/*</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>list</servlet-name>
<url-pattern>/seedlist</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>kiwi</servlet-name>
<url-pattern>*.abc</url-pattern>

</servlet-mapping>

Table 3-1 url-patterns and Servlet Invocation

URL Servlet
Invoked

http://host:port/mywebapp/fruit/summer/index.html watermelon

http://host:port/mywebapp/fruit/summer/index.abc watermelon

http://host:port/mywebapp/seedlist list
Assembling and Configuring Web Applications 3-3

3 Configuring Web Application Components
Servlet Initialization Parameters

You define initialization parameters for servlets in the Web Application deployment
descriptor, web.xml, in the <init-param> element of the <servlet> element, using
<param-name> and <param-value> tags. For example:

http://host:port/mywebapp/seedlist/index.html The default
servlet, if
configured, or an
HTTP 404 File
Not Found error
message.
If the mapping
for the list
servlet had been
/seedlist*,
the list servlet
would be
invoked.

http://host:port/mywebapp/seedlist/pear.abc kiwi

If the mapping
for the list
servlet had been
/seedlist*,
the list servlet
would be
invoked.

http://host:port/mywebapp/seeds garden

http://host:port/mywebapp/seeds/index.html garden

http://host:port/mywebapp/index.abc kiwi

Table 3-1 url-patterns and Servlet Invocation

URL Servlet
Invoked
3-4 Assembling and Configuring Web Applications

Configuring JSP
Listing 3-2 Example of Configuring Servlet Initialization Parameters in web.xml

<servlet>
<servlet-name>HelloWorld2</servlet-name>
<servlet-class>examples.servlets.HelloWorld2</servlet-class>

<init-param>
<param-name>greeting</param-name>
<param-value>Welcome</param-value>

</init-param>

<init-param>
<param-name>person</param-name>
<param-value>WebLogic Developer</param-value>

</init-param>
</servlet>
</servlet>

For more information on editing the Web Application deployment descriptor, see
“Writing Web Application Deployment Descriptors” on page 8-1.

Configuring JSP

You deploy JavaServer Pages (JSP) files by placing them in the root (or in a
subdirectory below the root) of a Web Application. Additional JSP configuration
parameters are defined in the <jsp-descriptor> element of the WebLogic-specific
deployment descriptor, weblogic.xml. These parameters define the following
functionality:

Options for the JSP compiler

Debugging

How often WebLogic Server checks for updated JSPs that need to be recompiled

Character encoding

For a complete description of these parameters, see “JSP Parameter Names and
Values” on page B-11.
Assembling and Configuring Web Applications 3-5

3 Configuring Web Application Components
For instructions on editing the weblogic.xml file, see “Main Steps to Create the
weblogic.xml File” on page 8-23.

You can also register a JSP as a servlet using the <servlet> tag. In this example a
URL containing /main will invoke myJSPfile.jsp:

<servlet>
<servlet-name>myFoo</servlet-name>
<jsp-file>myJSPfile.jsp</jsp-file>

</servlet>

<servlet-mapping>
<servlet-name>myFoo</servlet-name>
<url-pattern>/main</url-pattern>

</servlet-mapping>

Registering a JSP in this manner allows you to specify the load order, initialization
parameters, and security roles for a JSP, just as you would for a servlet.

Configuring JSP Tag Libraries

Weblogic Server lets you create and use custom JSP tags. Custom JSP tags are Java
classes you can call from within a JSP page. To create custom JSP tags, you place them
in a tag library and define their behavior in a tag library descriptor (TLD) file. You
make this TLD available to the Web Application containing the JSP by defining it in
the Web Application deployment descriptor. It is a good idea to place the TLD file in
the WEB-INF directory of your Web Application, because that directory is never
available publicly.

In the Web Application deployment descriptor, you define a URI pattern for the tag
library. This URI pattern must match the value in the taglib directive in your JSP pages.
You also define the location of the TLD. For example, if the taglib directive in the JSP
page is:

<%@ taglib uri="myTaglib" prefix="taglib" %>

and the TLD is located in the WEB-INF directory of your Web Application, you would
create the following entry in the Web Application deployment descriptor:

<taglib>
<taglib-uri>myTaglib</taglib-uri>
3-6 Assembling and Configuring Web Applications

Configuring Welcome Pages
 <tablig-location>WEB-INF/myTLD.tld</taglib-location>
</taglib>

You can also deploy a tag library as a .jar file. For more information, see Deploying
a JSP Tag Library as a JAR File at
http://e-docs.bea.com/wls/docs70/taglib/admin.html#jar.

For more information on creating custom JSP tag libraries, see Programming JSP Tag
Extensions at http://e-docs.bea.com/wls/docs70/jsp/index.html.

WebLogic Server also includes several custom JSP tags that you can use in your
applications. These tags perform caching, facilitate query parameter-based flow
control, and facilitate iterations over sets of objects. For more information, see:

Using Custom WebLogic JSP Tags at
http://e-docs.bea.com/wls/docs70/taglib/customtags.html.

Using WebLogic JSP Form Validation Tags at
http://e-docs.bea.com/wls/docs70/jsp/validation_tags.html.

Configuring Welcome Pages

WebLogic Server allows you to set a page that is served by default if the requested
URL is a directory. This feature can make your site easier to use, because the user can
type a URL without giving a specific filename.

Welcome pages are defined at the Web Application level. If your server is hosting
multiple Web Applications, you need to define welcome pages separately for each
Web Application.

To define Welcome pages, edit the Web Application deployment descriptor,
web.xml. For more information, see “Step 13: Define welcome pages” on page 8-14.

If you do not define Welcome Pages, WebLogic Server looks for the following files in
the following order and serves the first one it finds:

1. index.html

2. index.htm

3. index.jsp
Assembling and Configuring Web Applications 3-7

http://e-docs.bea.com/wls/docs70/taglib/admin.html#jar
http://e-docs.bea.com/wls/docs70/taglib/admin.html#jar
http://e-docs.bea.com/wls/docs70/taglib/index.html
http://e-docs.bea.com/wls/docs70/taglib/index.html
http://e-docs.bea.com/wls/docs70/jsp/customtags.html
http://e-docs.bea.com/wls/docs70/jsp/validation_tags.html

3 Configuring Web Application Components
For more information, see How WebLogic Server Resolves HTTP Requests at
http://e-docs.bea.com/wls/docs70/adminguide/web_server.html#resol
ve_http_req.

Setting Up a Default Servlet

Each Web Application has a default servlet. This default servlet can be a servlet that
you specify, or, if you do not specify a default servlet, WebLogic Server uses an
internal servlet called the FileServlet as the default servlet. For more information
on the FileServlet, see How WebLogic Server Resolves HTTP Requests at
http://e-docs.bea.com/wls/docs70/adminguide/web_server.html#resol
ve_http_req.

You can register any servlet as the default servlet. Writing your own default servlet
allows you to use your own logic to decide how to handle a request that falls back to
the default servlet.

Setting up a default servlet replaces the FileServlet and should be done carefully
because the FileServlet is used to serve most files, such as text files, HTML file,
image files, and more. If you expect your default servlet to serve such files, you will
need to write that functionality into your default servlet.

To set up a user-defined default servlet:

1. Define your servlet as described in Configuring Servlets on page 3-2.

2. Map your default servlet with a url-pattern of “/”. This causes your default
servlet to respond to all types of files except for those with extensions of *.htm
or *.html, which are internally mapped to the FileServlet.

If you also want your default servlet to respond to files ending in *.htm or
*.html, then you must map those extensions to your default servlet, in addition
to mapping “/”. For instructions on mapping servlets, see Configuring Servlets
on page 3-2.

3. If you still want the FileServlet to serve files with other extensions:

a. Define a servlet and give it a <servlet-name>, for example myFileServlet.

b. Define the <servlet-class> as weblogic.servlet.FileServlet.
3-8 Assembling and Configuring Web Applications

http://e-docs.bea.com/wls/docs70/adminguide/web_server.html#resolve_http_req
http://e-docs.bea.com/wls/docs70/adminguide/web_server.html#resolve_http_req

Customizing HTTP Error Responses
a. Using the <servlet-mapping> element, map file extensions to the
myFileServlet (in addition to the mappings for your default servlet). For
example, if you want the myFileServlet to serve gif files, map *.gif to the
myFileServlet.

Note: The FileServlet includes the SERVLET_PATH when determining the
source filename if docHome is not specified. As a result, it is possible to
explicitly serve only files from specific directories by mapping the
FileServlet to /dir/*, etc.

Customizing HTTP Error Responses

You can configure WebLogic Server to respond with your own custom Web pages or
other HTTP resources when particular HTTP errors or Java exceptions occur, instead
of responding with the standard WebLogic Server error response pages.

You define custom error pages in the <error-page> element of the Web Application
deployment descriptor (web.xml). For more information on error pages, see
“error-page” on page A-13.

Using CGI with WebLogic Server

WebLogic Server provides functionality to support your legacy Common Gateway
Interface (CGI) scripts. For new projects, we suggest you use HTTP servlets or
JavaServer Pages.

WebLogic Server supports all CGI scripts through an internal WebLogic servlet called
the CGIServlet. To use CGI, register the CGIServlet in the Web Application
deployment descriptor (see “Sample Web Application Deployment Descriptor Entries
for Registering the CGIServlet” on page 3-10). For more information, see Configuring
Servlets on page 3-2.
Assembling and Configuring Web Applications 3-9

3 Configuring Web Application Components
Configuring WebLogic Server to Use CGI

To configure CGI in WebLogic Server:

1. Declare the CGIServlet in your Web Application by using the <servlet> and
<servlet-mapping> elements. The class name for the CGIServlet is
weblogic.servlet.CGIServlet. You do not need to package this class in your
Web Application.

2. Register the following initialization parameters for the CGIServlet by defining
the following <init-param> elements:

cgiDir
The path to the directory containing your CGI scripts. You can specify
multiple directories, separated by a “;” (Windows) or a “:” (Unix). If
you do not specify cgiDir, the directory defaults to a directory named
cgi-bin under the Web Application root.

useByteStream

The alternate to using the default Char streams for data transfer, this
parameter, which is case sensitive, will allow the use of images in the
CGI servlet without distortion.

extension mapping
Maps a file extension to the interpreter or executable that runs the script.
If the script does not require an executable, this initialization parameter
may be omitted.
The <param-name> for extension mappings must begin with an asterisk
followed by a dot, followed by the file extension, for example, *.pl.
The <param-value> contains the path to the interpreter or executable
that runs the script. You can create multiple mappings by creating a
separate <init-param> element for each mapping.

Listing 3-3 Sample Web Application Deployment Descriptor Entries for
Registering the CGIServlet

<servlet>
<servlet-name>CGIServlet</servlet-name>
<servlet-class>weblogic.servlet.CGIServlet</servlet-class>
3-10 Assembling and Configuring Web Applications

Using CGI with WebLogic Server
<init-param>
<param-name>cgiDir</param-name>
<param-value>
/bea/wlserver6.0/config/mydomain/applications/myWebApp/cgi-bin
</param-value>

</init-param>

<init-param>
<param-name>*.pl</param-name>
<param-value>/bin/perl.exe</param-value>
</init-param>

</servlet>

...

<servlet-mapping>
<servlet-name>CGIServlet</servlet-name>
<url-pattern>/cgi-bin/*</url-pattern>

</servlet-mapping>

Requesting a CGI Script

The URL used to request a perl script must follow the pattern:

http://host:port/myWebApp/cgi-bin/myscript.pl

Where

host:port
Is the host name and port number of WebLogic Server.

myWebApp
is the name of your Web Application.

cgi-bin
is the url-pattern name mapped to the CGIServlet.

myscript.pl
is the name of the Perl script that is located in the directory specified by the
cgiDir initialization parameter.
Assembling and Configuring Web Applications 3-11

3 Configuring Web Application Components
Serving Resources from the CLASSPATH
with the ClasspathServlet

If you need to serve classes or other resources from the system CLASSPATH, or from
the WEB-INF/classes directory of a Web Application, you can use a special servlet
called the ClasspathServlet. The ClasspathServlet is useful for applications
that use applets or RMI clients and require access to server-side classes. The
ClasspathServlet is implicitly registered and available from any application.

There are two ways that you can use the ClasspathServlet:

To serve a resource from the system CLASSPATH, call the resource with a URL
such as:

http://server:port/classes/my/resource/myClass.class

To serve a resource from the WEB-INF/classes directory of a Web Application,
call the resource with a URL such as:

http://server:port/myWebApp/classes/my/resource/myClass.class

In this case, the resource is located in the following directory, relative to the root
of the Web Application:

WEB-INF/classes/my/resource/myClass.class

Warning: Since the ClasspathServlet serves any resource located in the system
CLASSPATH, do not place resources that should not be publicly available
in the system CLASSPATH.

Configuring Resources in a Web Application

The resources that you use in a Web Application are generally deployed externally to
the application. JDBC Datasources can optionally be deployed within the scope of the
Web Application as part of an EAR file.
3-12 Assembling and Configuring Web Applications

Configuring Resources in a Web Application
Prior to WebLogic Server 7.0, JDBC DataSources were always deployed externally to
the Web Application. To use external resources in the Web Application, you resolve
the JNDI resource name that the application uses with the global JNDI resource name
using the web.xml and weblogic.xml deployment descriptors. See “Configuring
External Resources” on page 3-13 for more information.

WebLogic Server 7.0 enables you deploy JDBC DataSources as part of the Web
Application EAR file by configuring those resources in the
weblogic-application.xml deployment descriptor. Resources deployed as part of
the EAR file are referred to as application-scoped resources. These resources remain
private to the Web Application, and application components can access the resource
names directly from the local JNDI tree at java:comp/env. See “Configuring
Application-Scoped Resources” on page 3-14 for more information.

Configuring External Resources

When accessing external resources (resources not deployed with the application EAR
file) such as a DataSource from a Web Application via Java Naming and Directory
Interface (JNDI), you can map the JNDI name you look up in your code to the actual
JNDI name as bound in the global JNDI tree. This mapping is made using both the
web.xml and weblogic.xml deployment descriptors and allows you to change these
resources without changing your application code. You provide a name that is used in
your Java code, the name of the resource as bound in the JNDI tree, and the Java type
of the resource, and you indicate whether security for the resource is handled
programmatically by the servlet or from the credentials associated with the HTTP
request.

To configure external resources:

1. Enter the resource name in the deployment descriptor as you use it in your code,
the Java type, and the security authorization type. For instructions on making
deployment descriptor entries, see “Step 16: Reference external resources” on page
8-16.

2. Map the resource name to the JNDI name. For instructions on making
deployment descriptor entries, see “Step 3 Map resources to JNDI” on page 8-25.
Assembling and Configuring Web Applications 3-13

3 Configuring Web Application Components
This example assumes that you have defined a data source called
accountDataSource. For more information, see JDBC Data Sources at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcdatasourc
e_config.html.

Listing 3-4 Example of Using an External DataSource

Servlet code:
javax.sql.DataSource ds = (javax.sql.DataSource) ctx.lookup
 ("myDataSource");

web.xml entries:

<resource-ref>
. . .

<res-ref-name>myDataSource</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>CONTAINER</res-auth>

. . .
</resource-ref>

weblogic.xml entries:

<resource-description>
<res-ref-name>myDataSource</res-ref-name>
<jndi-name>accountDataSource</jndi-name>

</resource-description>

Configuring Application-Scoped Resources

WebLogic Server binds application-scoped resource names to the application’s local
JNDI tree. The Web Application code accesses these resources by looking up the
actual JNDI resource name relative to java:comp/env.

If your Web Application uses only application-scoped resources, you do not need to
enter global JNDI resources names in the weblogic.xml deployment descriptor, as
described in “Configuring External Resources” on page 3-13. (In fact, you can omit
weblogic.xml entirely if you do not require any other features of that deployment
descriptor.)

To configure application-scoped resources:
3-14 Assembling and Configuring Web Applications

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcdatasource_config.html

Referencing EJBs in a Web Application
1. Enter the resource definition in the weblogic-application.xml deployment
descriptor. See weblogic-application.xml Deployment Descriptor Elements in
Developing WebLogic Server Applications for more information.

2. Ensure that Web Application code uses the same JNDI name specified in
weblogic-application.xml, and that it references the name relative to the
local JNDI tree at java:comp/env.

Note: If Web Application code uses a different JNDI name to reference the
resource, you must treat the resource as external and configure the
weblogic.xml deployment descriptor as describe in the next section.

Listing 3-5 Example of Using an External DataSource

Servlet code:
javax.sql.DataSource ds = (javax.sql.DataSource) ctx.lookup
 ("java:comp/env/myDataSource");

weblogic-application.xml entries:

<weblogic-application>
<data-source-name>myDataSource</data-source-name>

</weblogic-application>

Referencing EJBs in a Web Application

EJBs that you use in a Web Application can be deployed either externally to the
application, or deployed within the scope of the Web Application as part of an EAR
file. The procedures for referencing an EJB differ depending on whether the EJB is
external or application-scoped.

Referencing External EJBs

Web Applications can access EJBs that are deployed as part of a different application
(a different EAR file) by using an external reference. The EJB being referenced
exports a name to the global JNDI tree in its weblogic-ejb-jar.xml deployment
Assembling and Configuring Web Applications 3-15

http://e-docs.bea.com/wls/docs70/programming/app_xml.html#client001
http://e-docs.bea.com/wls/docs70/programming/index.html

3 Configuring Web Application Components
descriptor. An EJB reference in the Web Application module can be linked to this
global JNDI name by adding an <ejb-reference-description> element to its
weblogic.xml deployment descriptor.

This procedure provides a level of indirection between the Web Application and an
EJB and is useful if you are using third-party EJBs or Web Applications and cannot
modify the code to directly call an EJB. In most situations, you can call the EJB
directly without using this indirection. For more information, see Invoking Deployed
EJBs at
http://e-docs.bea.com/wls/docs70/ejb/EJB_design.html#design_invok
ing.

To reference an external EJB for use in a Web Application:

1. Enter the EJB reference name you use to look up the EJB in your code, the Java
class name, and the class name of the home and remote interfaces of the EJB in the
<ejb-ref> element of the Web Application deployment descriptor. For
instructions on making deployment descriptor entries, see “Step 21: Reference
Enterprise JavaBean (EJB) resources” on page 8-20

2. Map the reference name in <ejb-reference-description> element of the
WebLogic-specific deployment descriptor, weblogic.xml, to the JNDI name
defined in the weblogic-ejb-jar.xml file. For instructions on making
deployment descriptor entries, see “Step 3 Map resources to JNDI” on page 8-25.

If the Web Application is part of an Enterprise Application Archive (.ear file),
you can reference an EJB by the name used in the .ear with the <ejb-link>
element.

Referencing Application-Scoped EJBs

Within an application, WebLogic Server binds any EJBs referenced by other
application components to the environments associated with those referencing
components. These resources are accessed at runtime through a JNDI name lookup
relative to java:comp/env.

The following is an example of an application deployment descriptor
(application.xml) for an application containing an EJB and a Web Application.
(The XML header is not included for brevity.)
3-16 Assembling and Configuring Web Applications

http://e-docs.bea.com/wls/docs70/ejb/EJB_design.html#design_invoking
http://e-docs.bea.com/wls/docs70/ejb/EJB_design.html#design_invoking

Referencing EJBs in a Web Application
Listing 3-6 Example Deployment Descriptor

 <application>

 <display-name>MyApp</display-name>

 <module>

 <web>

 <web-uri>myapp.war</web-uri>

 <context-root>myapp</context-root>

 </web>

 </module>

 <module>

 <ejb>ejb1.jar</ejb>

 </module>

 </application>

To allow the code in the Web application to use an EBJ in ejb1.jar, the Web
application deployment descriptor (web.xml) must include an <ejb-ref> stanza that
contains an <ejb-link> referencing the JAR file and the name of the EJB that is
being called.

The format of the <ejb-link> entry must be as follows:

filename#ejbname

where filename is the name of the JAR file, relative to the Web application, and
ejbname is the EJB within that JAR file. The <ejb-link> element should look like
the following:

<ejb-link>../ejb1.jar#myejb</ejb-link>

Note that since the JAR path is relative to the WAR file, it begins with "../". Also, if
the ejbname is unique across the application, the JAR path may be dropped. As a
result, your entry may look like the following:

<ejb-link>myejb</ejb-link>
Assembling and Configuring Web Applications 3-17

3 Configuring Web Application Components
The <ejb-link> element is a sub-element of an <ejb-ref> element contained in the
Web application's web.xml descriptor. The <ejb-ref> element should look like the
following:

Listing 3-7 <ejb-ref> Element

 <web-app>

 ...

 <ejb-ref>

 <ejb-ref-name>ejb1</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>mypackage.ejb1.MyHome</home>

 <remote>mypackage.ejb1.MyRemote</remote>

 <ejb-link>../ejb1.jar#myejb</ejb-link>

 </ejb-ref>

 ...

 </web-app>

The name referenced in the <ejb-link> (in this example, myejb) corresponds to the
<ejb-name> element of the referenced EJB's descriptor. As a result, the deployment
descriptor (ejb-jar.xml) of the EJB module that this <ejb-ref> is referencing
should have an entry an entry similar to the following:

Listing 3-8

 <ejb-jar>

 ...

 <enterprise-beans>

 <session>

 <ejb-name>myejb</ejb-name>
3-18 Assembling and Configuring Web Applications

Determining the Encoding of an HTTP Request
 <home>mypackage.ejb1.MyHome</home>

 <remote>mypackage.ejb1.MyRemote</remote>

 <ejb-class>mypackage.ejb1.MyBean</ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 </session>

 </enterprise-beans>

 ...

 </ejb-jar>

Notice the <ejb-name> element is set to myejb.

Note: For more instructions on creating deployment descriptor entries, see “Step 21:
Reference Enterprise JavaBean (EJB) resources” on page 8-20.

At runtime, the Web Application code looks up the EJB's JNDI name relative to
java:/comp/env. The following is an example of the servlet code:

MyHome home = (MyHome)ctx.lookup("java:/comp/env/ejb1");

The name used in this example (ejb1) is the <ejb-ref-name> defined in the
<ejb-ref> element of the web.xml segment above.

Determining the Encoding of an HTTP
Request

WebLogic Server needs to convert character data contained in an HTTP request from
its native encoding to the Unicode encoding used by the Java servlet API. In order to
perform this conversion, WebLogic Server needs to know which codeset was used to
encode the request.
Assembling and Configuring Web Applications 3-19

3 Configuring Web Application Components
There are two ways you can define the codeset:

For a POST operation, you can set the encoding in the HTML <form> tag. For
example, this form tag sets SJIS as the character set for the content:

<form action="http://some.host.com/myWebApp/foo/index.html">
 <input type="application/x-www-form-urlencoded; charset=SJIS">
</form>

When the form is read by WebLogic Server, it processes the data using the SJIS
character set.

Because all Web clients do not transmit the information after the semicolon in
the above example, you can set the codeset to be used for requests by using the
<input-charset> element in the WebLogic-specific deployment descriptor,
weblogic.xml. The <java-charset-name> element defines the encoding used
to convert data when the URL of the request contains the path specified with the
<resource-path> element.

For example:

<input-charset>
 <resource-path>/foo/*</resource-path>
 <java-charset-name>SJIS</java-charset-name>
</input-charset>

This method works for both GET and POST operations.

For more information on the Web Application deployment descriptor, see
“Writing the WebLogic-Specific Deployment Descriptor (weblogic.xml)” on
page 8-23.

Mapping IANA Character Sets to Java
Character Sets

The names assigned by the Internet Assigned Numbers Authority (IANA) to describe
character sets are sometimes different from the names used by Java. Because all HTTP
communication uses the IANA character set names and these names are not always the
same, WebLogic Server internally maps IANA character set names to Java character
3-20 Assembling and Configuring Web Applications

Mapping IANA Character Sets to Java Character Sets
set names and can usually determine the correct mapping. However, you can resolve
any ambiguities by explicitly mapping an IANA character set to the name of a Java
character set.

To map a IANA character set to a Java character set the character set names in the
<charset-mapping> element of the WebLogic-specific deployment descriptor,
weblogic.xml. Define the IANA character set name in the <iana-charset-name>
element and the Java character set name in the <java-charset-name> element. For
example:

<charset-mapping>
<iana-charset-name>Shift-JIS</iana-charset-name>
<java-charset-name>SJIS</java-charset-name>

</charset-mapping>
Assembling and Configuring Web Applications 3-21

3 Configuring Web Application Components
3-22 Assembling and Configuring Web Applications

CHAPTER
4 Using Sessions and
Session Persistence in
Web Applications

The following sections describe how to set up sessions and session persistence:

“Overview of HTTP Sessions” on page 4-1

“Setting Up Session Management” on page 4-2

“Configuring Session Persistence” on page 4-4

“Using URL Rewriting” on page 4-10

Overview of HTTP Sessions

Session tracking enables you to track a user's progress over multiple servlets or HTML
pages, which, by nature, are stateless. A session is defined as a series of related browser
requests that come from the same client during a certain time period. Session tracking
ties together a series of browser requests—think of these requests as pages—that may
have some meaning as a whole, such as a shopping cart application.
Assembling and Configuring Web Applications 4-1

4 Using Sessions and Session Persistence in Web Applications
Setting Up Session Management

WebLogic Server is set up to handle session tracking by default. You need not set any
of these properties to use session tracking. However, configuring how WebLogic
Server manages sessions is a key part of tuning your application for best performance.
Tuning depends upon factors such as:

How many users you expect to hit the servlet

How many concurrent users hit the servlet

How long each session lasts

How much data you expect to store for each user

Heap size allocated to the WebLogic Server instance.

HTTP Session Properties

You configure WebLogic Server session tracking with properties in the
WebLogic-specific deployment descriptor, weblogic.xml. For instructions on
editing the WebLogic-specific deployment descriptor, see “Step 4: Define session
parameters” on page 8-27.

For a complete list of session attributes, see “jsp-descriptor” on page B-11.

WebLogic Server 7.0 introduced a change to the SessionID format that caused some
load balancers to lose the ability to retain session stickiness.

A new server startup flag,
-Dweblogic.servlet.useExtendedSessionFormat=true , retains the
information that the load-balancing application needs for session stickiness. The
extended session ID format will be part of the URL if URL rewriting is activated, and
the startup flag is set to true.
4-2 Assembling and Configuring Web Applications

Setting Up Session Management
Session Timeout

You can specify an interval of time after which HTTP sessions expire. When a session
expires, all data stored in the session is discarded. You can set the interval in either
web.xml or weblogic.xml:

Set the TimeoutSecs attribute in the “jsp-descriptor” on page B-11 of the
WebLogic-specific deployment descriptor, weblogic.xml. This value is set in
seconds.

Set the <session-timeout> (see “session-config” on page A-11) element in
the Web Application deployment descriptor, web.xml.

Configuring Session Cookies

WebLogic Server uses cookies for session management when supported by the client
browser.

The cookies that WebLogic Server uses to track sessions are set as transient by default
and do not outlive the session. When a user quits the browser, the cookies are lost and
the session lifetime is regarded as over. This behavior is in the spirit of session usage
and it is recommended that you use sessions in this way.

You can configure session-tracking attributes of cookies in the WebLogic-specific
deployment descriptor, weblogic.xml. A complete list of session and cookie-related
attributes is available “jsp-descriptor” on page B-11.

For instructions on editing the WebLogic-specific deployment descriptor, see “Step 4:
Define session parameters” on page 8-27.

Using Cookies That Outlive a Session

For longer-lived client-side user data, your application should create and set its own
cookies on the browser via the HTTP servlet API, and should not attempt to use the
cookies associated with the HTTP session. Your application might use cookies to
auto-login a user from a particular machine, in which case you would set a new cookie
Assembling and Configuring Web Applications 4-3

4 Using Sessions and Session Persistence in Web Applications
to last for a long time. Remember that the cookie can only be sent from that client
machine. Your application should store data on the server if it must be accessed by the
user from multiple locations.

You cannot directly connect the age of a browser cookie with the length of a session.
If a cookie expires before its associated session, that session becomes orphaned. If a
session expires before its associated cookie, the servlet is not be able to find a session.
At that point, a new session is assigned when the request.getSession(true)
method is called. You should only make transient use of sessions.

You can set the maximum life of a cookie with the CookieMaxAgeSecs parameter in
the session descriptor of the weblogic.xml deployment descriptor. For more
information, see “Step 4: Define session parameters” on page 8-27.

Logging Out and Ending a Session

User authentication information is stored both in the user's session data and in the
context of a server or virtual host that is targeted by a Web Application. The
session.invalidate() method, which is often used to log out a user, only
invalidates the current session for a user—the user's authentication information still
remains valid and is stored in the context of the server or virtual host. If the server or
virtual host is hosting only one Web Application, the session.invalidate()
method, in effect, logs out the user.

There are several Java methods and strategies you can use when using authentication
with multiple Web Applications. For more information, see Implementing Single
Sign-On in the Programming WebLogic HTTP Servlets, at
http://e-docs.bea.com/wls/docs70/servlet/progtasks.html#sso.

Configuring Session Persistence

Use Session Persistence to permanently stored data from an HTTP session object in
order to enable failover and load balancing across a cluster of WebLogic Servers.
When your applications stores data in an HTTP session object, the data must be
serializable.
4-4 Assembling and Configuring Web Applications

http://e-docs.bea.com/wls/docs70/servlet/progtasks.html#sso
http://e-docs.bea.com/wls/docs70/servlet/progtasks.html#sso

Configuring Session Persistence
There are five different implementations of session persistence:

Memory (single-server, non-replicated)

File system persistence

JDBC persistence

Cookie-based session persistence

In-memory replication (across a cluster)

The first four are discussed here; in-memory replication is discussed in “HTTP Session
State Replication,” in Using WebLogic Server Clusters, at
http://http://e-docs.bea.com/wls/docs70/cluster/failover.html#102203
4.html.

File, JDBC, Cookie-based, and memory (single-server, non-populated) session
persistence have some common properties. Each persistence method has its own set of
attributes, as discussed in the following sections.

Common Properties of Session Attributes

This section describes attributes common to file system, memory (single-server,
non-replicated), JDBC, and cookie-based persistence. You can configure the number
of sessions that are held in memory by setting the following properties in the
<session-descriptor> element of the WebLogic-specific deployment descriptor,
weblogic.xml. These properties are only applicable if you are using session
persistence:

CacheSize
Limits the number of cached sessions that can be active in memory at any one
time. If you are expecting high volumes of simultaneous active sessions, you
do not want these sessions to soak up the RAM of your server since this may
cause performance problems swapping to and from virtual memory. When the
cache is full, the least recently used sessions are stored in the persistent store
and recalled automatically when required. If you do not use persistence, this
property is ignored, and there is no soft limit to the number of sessions allowed
in main memory. By default, the number of cached sessions is 1024. The
minimum is 16, and maximum is Integer.MAX_VALUE. An empty session uses
less than 100 bytes, but grows as data is added to it.
Assembling and Configuring Web Applications 4-5

http://e-docs.bea.com/wls/docs70/cluster/failover.html#1022034
http://e-docs.bea.com/wls/docs70/cluster/failover.html#1022034

4 Using Sessions and Session Persistence in Web Applications
SwapIntervalSecs
The interval the server waits between purging the least recently used sessions
from the cache to the persistent store, when the cacheEntries limit has been
reached.

If unset, this property defaults to 10 seconds; minimum is 1 second, and
maximum is 604800 (1 week).

InvalidationIntervalSecs
Sets the time, in seconds, that WebLogic Server waits between doing
house-cleaning checks for timed-out and invalid sessions, and deleting the old
sessions and freeing up memory. Set this parameter to a value less than the
value set for the <session-timeout> element. Use this parameter to tune
WebLogic Server for best performance on high traffic sites.

The minimum value is every second (1). The maximum value is once a week
(604,800 seconds). If unset, the parameter defaults to 60 seconds.

To set <session-timeout>, see the “session-config” on page A-11 of the
Web Application deployment descriptor web.xml.

Using Memory-based, Single-server, Non-replicated
Persistent Storage

To use memory-based, single-server, non-replicated persistent storage, set the
PersistentStoreType property in the <session-descriptor> element of the
WebLogic-specific deployment descriptor, weblogic.xml to memory. When you use
memory-based storage, all session information is stored in memory and is lost when
you stop and restart WebLogic Server.

Note: If you do not allocate sufficient heap size when running WebLogic Server,
your server may run out of memory under heavy load.

Using File-based Persistent Storage

To configure file-based persistent storage for sessions:
4-6 Assembling and Configuring Web Applications

Configuring Session Persistence
1. Set the PersistentStoreType property in the <session-descriptor> element
in the deployment descriptor file weblogic.xml to file.

2. Set the directory where WebLogic Server stores the sessions. See
“PersistentStoreDir” on page B-8.

If you do not explicitly set a value for this attribute, a temporary directory is
created for you by WebLogic Server.

If you are using file-based persistence in a cluster, you must explicitly set this
attribute to a shared directory that is accessible to all the servers in a cluster. You
must create this directory yourself.

Using a Database for Persistent Storage (JDBC
persistence)

JDBC persistence stores session data in a database table using a schema provided for
this purpose. You can use any database for which you have a JDBC driver. You
configure database access by using connection pools.

To configure JDBC-based persistent storage for sessions:

1. Set the PersistentStoreType property in the <session-descriptor> element
of the WebLogic-specific deployment descriptor, weblogic.xml, to jdbc.

2. Set a JDBC connection pool to be used for persistence storage with the
PersistentStorePool property of the WebLogic-specific deployment
descriptor, weblogic.xml. Use the name of a connection pool that is defined in
the WebLogic Server Administration Console.

For more details on setting up a database connection pool, see Managing JDBC
Connectivity at
http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html.

3. Set an ACL for the connection that corresponds to the users that have permission.
For more details on setting up a database connection, see Managing JDBC
Connectivity at
http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html.
Assembling and Configuring Web Applications 4-7

http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html

4 Using Sessions and Session Persistence in Web Applications
4. Set up a database table named wl_servlet_sessions for JDBC-based
persistence. The connection pool that connects to the database needs to have
read/write access for this table. The following table shows the Column names and
data types you should use when creating this table.

If you are using an Oracle DBMS, use the following SQL statement to create the
wl_servlet_sessions table:

create table wl_servlet_sessions
 (wl_id VARCHAR2(100) NOT NULL,
 wl_context_path VARCHAR2(100) NOT NULL,
 wl_is_new CHAR(1),
 wl_create_time NUMBER(20),
 wl_is_valid CHAR(1),
 wl_session_values LONG RAW,

Column name Type

wl_id Variable-width alphanumeric column, up to 100
characters; for example, Oracle VARCHAR2(100).
 The primary key must be set as follows:
wl_id + wl_context_path.

wl_context_path Variable-width alphanumeric column, up to 100
characters; for example, Oracle VARCHAR2(100).
This column is used as part of the primary key. (See the
wl_id column description.)

wl_is_new Single char column; for example, Oracle CHAR(1)

wl_create_time Numeric column, 20 digits; for example, Oracle
NUMBER(20)

wl_is_valid Single char column; for example, Oracle CHAR(1)

wl_session_values Large binary column; for example, Oracle LONG RAW

wl_access_time Numeric column, 20 digits; for example, NUMBER(20)

wl_max_inactive_interval Integer column; for example, Oracle Integer.
Number of seconds between client requests before the
session is invalidated. A negative time value indicates
that the session should never timeout.
4-8 Assembling and Configuring Web Applications

Configuring Session Persistence
 wl_access_time NUMBER(20),
 wl_max_inactive_interval INTEGER,
 PRIMARY KEY (wl_id, wl_context_path));

If you are using SqlServer2000, use the following SQL statement to create the
wl_servlet_sessions table:

create table wl_servlet_sessions
 (wl_id VARCHAR2(100) NOT NULL,
 wl_context_path VARCHAR2(100) NOT NULL,
 wl_is_new VARCHAR(1),
 wl_create_time DeCIMAL,
 wl_is_valid VARCHAR(1),
 wl_session_values IMAGE,
 wl_access_time DECIMAL,
 wl_max_inactive_interval INTEGER,
 PRIMARY KEY (wl_id, wl_context_path));

Modify one of the preceeding SQL statements for use with your DBMS.

Note: You can configure a maximum duration that JDBC session persistence should
wait for a JDBC connection from the connection pool before failing to load the
session data with the JDBCConnectionTimeoutSecs attribute. For more
information, see “JDBCConnectionTimeoutSecs”.

Using Cookie-Based Session Persistence

Cookie-based session persistence provides a stateless solution for session persistence
by storing all session data in a cookie that is stored in the user’s browser. Cookie-based
session persistence is most useful when you do not need to store large amounts of data
in the session. Cookie-based session persistence can make managing your WebLogic
Server installation easier because clustering failover logic is not required. Because the
session is stored in the browser, not on the server, you can start and stop WebLogic
Servers without losing sessions.

There are some limitations to cookie-based session persistence:

You can store only string attributes in the session. If you store any other type of
object in the session, an IllegalArgument exception is thrown.
Assembling and Configuring Web Applications 4-9

4 Using Sessions and Session Persistence in Web Applications
You cannot flush the HTTP response (because the cookie must be written to the
header data before the response is committed).

If the content length of the response exceeds the buffer size, the response is
automatically flushed and the session data cannot be updated in the cookie. (The
buffer size is, by default, 8192 bytes. You can change the buffer size with the
javax.servlet.ServletResponse.setBufferSize() method.

You can only use basic (browser-based) authentication.

Session data is sent to the browser in clear text.

The user’s browser must be configured to accept cookies.

You cannot use commas (,) in a string when using cookie-based session
persistence or an exception occurs.

To set up cookie-based session persistence:

1. In the <session-descriptor> element of weblogic.xml, set the
PersistentStoreType parameter to cookie.

2. Optionally, set a name for the cookie using the PersistentStoreCookieName
parameter. The default is WLCOOKIE.

Using URL Rewriting

In some situations, a browser or wireless device may not accept cookies, which makes
session tracking using cookies impossible. URL rewriting is a solution to this situation
that can be substituted automatically when WebLogic Server detects that the browser
does not accept cookies. URL rewriting involves encoding the session ID into the
hyper-links on the Web pages that your servlet sends back to the browser. When the
user subsequently clicks these links, WebLogic Server extracts the ID from the URL
address and finds the appropriate HttpSession when your servlet calls the
getSession() method.

Enable URL rewriting in WebLogic Server by setting the URLRewritingEnabled
attribute in the WebLogic-specific deployment descriptor, weblogic.xml, under the
<session-descriptor> element. The default value for this attribute is true. See
“URLRewritingEnabled” on page B-10.
4-10 Assembling and Configuring Web Applications

Using URL Rewriting
Coding Guidelines for URL Rewriting

There are some general guidelines for how your code should handle URLs in order to
support URL rewriting.

Avoid writing a URL straight to the output stream, as shown here:

out.println("catalog");

Instead, use the HttpServletResponse.encodeURL() method, for example:

out.println("<a href=\"”
 + response.encodeURL(“myshop/catalog.jsp”)
 + “\">catalog");

Calling the encodeURL() method determines if the URL needs to be rewritten,
and if so, it rewrites it by including the session ID in the URL. The session ID is
appended to the URL and begins with a semicolon.

In addition to URLs that are returned as a response to WebLogic Server, also
encode URLs that send redirects. For example:

if (session.isNew())
response.sendRedirect

(response.encodeRedirectUrl(welcomeURL));

WebLogic Server uses URL rewriting when a session is new, even if the browser
does accept cookies, because the server cannot tell whether a browser accepts
cookies in the first visit of a session.

Your servlet can determine whether a given session ID was received from a
cookie by checking the Boolean returned from the
HttpServletRequest.isRequestedSessionIdFromCookie() method. Your
application may respond appropriately, or simply rely on URL rewriting by
WebLogic Server.

URL Rewriting and Wireless Access Protocol (WAP)

If you are writing a WAP application, you must use URL rewriting because the WAP
protocol does not support cookies. In addition, some WAP devices have a
128-character limit on the length of a URL (including parameters), which limits the
Assembling and Configuring Web Applications 4-11

4 Using Sessions and Session Persistence in Web Applications
amount of data that can be transmitted using URL rewriting. To allow more space for
parameters, you can limit the size of the session ID that is randomly generated by
WebLogic Server. See “IDLength” on page B-9.
4-12 Assembling and Configuring Web Applications

CHAPTER
5 Configuring Security
in Web Applications

The following sections describe how to configure security in Web Applications:

“Overview of Configuring Security in Web Applications” on page 5-1

“Setting Up Authentication for Web Applications” on page 5-2

“Multiple Web Applications, Cookies, and Authentication” on page 5-4

“Restricting Access to Resources in a Web Application” on page 5-5

“Using Users and Roles Programmatically in Servlets” on page 5-6

To see overview, upgrade, and new information about WebLogic Server security, see
Security.

Overview of Configuring Security in Web
Applications

You can secure a Web Application by using authentication, by restricting access to
certain resources in the Web Application, or by using security calls in your servlet
code. Several types of security realms can be used. Security realms are discussed in the
document Security Fundamentals at
http://e-docs.bea.com/wls/docs70/secintro/concepts.html. Note that a
security realm is shared across multiple virtual hosts.
Assembling and Configuring Web Applications 5-1

http://e-docs.bea.com/wls/docs70/security.html
http://e-docs.bea.com/wls/docs70/secintro/concepts.html

5 Configuring Security in Web Applications
Setting Up Authentication for Web
Applications

To configure authentication for a Web Application, use the <login-config> element
of the web.xml deployment descriptor. In this element you define the security realm
containing the user credentials, the method of authentication, and the location of
resources for authentication. For information on setting up a security realm, see
Security Fundamentals at
http://e-docs.bea.com/wls/docs70/secintro/concepts.html.

On application deployment, WebLogic Server reads role information from the
weblogic.xml file. This information is used to populate the Authorization provider
configured for the security realm. Once the role information is in the Authorization
provider, changes made through the WebLogic Server Administration Console are not
persisted to the weblogic.xml file. Before you redeploy the application (which will
happen when you redeploy it through the console, modify it on disk, or restart
WebLogic Server), you need to enable the Ignore security data in deployment
descriptors attribute on the Security Realm --> General tab. Otherwise, the old data in
the weblogic.xml file will overwrite any changes made through the WebLogic
Server Administration Console.

To set up authentication for Web Applications:

1. Open the web.xml deployment descriptor in a text editor or use the Administration
Console. For more information, see “Web Application Developer Tools” on page
1-7.

2. Specify the authentication method using the <auth-method> element. The
available options are:

BASIC
Basic authentication uses the Web Browser to display a
username/password dialog box. This username and password is
authenticated against the realm.

FORM
Form-based authentication requires that you return an HTML form
containing the username and password. The fields returned from the
form elements must be: j_username and j_password, and the action
5-2 Assembling and Configuring Web Applications

http://e-docs.bea.com/wls/docs70/secintro/concepts.html

Setting Up Authentication for Web Applications
attribute must be j_security_check. Here is an example of the
HTML coding for using FORM authentication:
<form method=”POST” action=”j_security_check”>

<input type=”text” name=”j_username”>
<input type=”password” name=”j_password”>

</form>

The resource used to generate the HTML form may be an HTML page,
a JSP, or a servlet. You define this resource with the
<form-login-page> element.
The HTTP session object is created when the login page is served.
Therefore, the session.isNew() method returns FALSE when called
from pages served after successful authentication.

CLIENT-CERT
Uses client certificates to authenticate the request. For more
information, see Configuring the SSL Protocol at
http://e-docs.bea.com/wls/docs70/secmanage/ssl.html.

3. If you choose FORM authentication, also define the location of the resource used
to generate the HTML page with the <form-login-page> element and the
resource that responds to a failed authentication with the <form-error-page>
element. For instructions on configuring form authentication, see
“form-login-config” on page A-22.

4. Specify a realm for authentication using the <realm-name> element. If you do
not specify a particular realm, the realm defined with the Auth Realm Name field
on the Web Application→ Configuration→Other tab of the Administration Console
is used. For more information, see “form-login-config” on page A-22.

5. If you want to define a separate login for a Web Application, see “Multiple Web
Applications, Cookies, and Authentication” on page 5-4. Otherwise, all Web
Applications that use the same cookie use a single sign-on for authentication.
Assembling and Configuring Web Applications 5-3

http://e-docs.bea.com/wls/docs70/secmanage/ssl.html

5 Configuring Security in Web Applications
Multiple Web Applications, Cookies, and
Authentication

By default, WebLogic Server assigns the same cookie name (JSESSIONID) to all Web
Applications. When you use any type of authentication, all Web Applications that use
the same cookie name use a single sign-on for authentication. Once a user is
authenticated, that authentication is valid for requests to any Web Application that uses
the same cookie name. The user is not prompted again for authentication.

If you want to require separate authentication for a Web Application, you can specify
a unique cookie name or cookie path for the Web Application. Specify the cookie name
using the CookieName parameter and the cookie path with the CookiePath parameter,
defined in the WebLogic-specific deployment descriptor weblogic.xml, in the
<session-descriptor> element. For more information, see “jsp-descriptor” on
page B-11.

If you want to retain the cookie name and still require independent authentication for
each Web Application, you can set the cookie path parameter (CookiePath)
differently for each Web Application.

As of Service Pack 3, BEA Systems added a new capability to WebLogic Server that
allows a user to securely access HTTPS resources in a session that was initiated using
HTTP, without loss of session data. To enable this new feature, add
AuthCookieEnabled="true" to the WebServer element in config.xml:

<WebServer Name="myserver" AuthCookieEnabled="true"/>

Setting AuthCookieEnabled to true causes the WebLogic Server instance to send a
new secure cookie to the browser when authenticating via an HTTPS connection. Once
the secure cookie is set, the session is allowed to access other security-constrained
HTTPS resources only if the cookie is sent from the browser.
5-4 Assembling and Configuring Web Applications

Restricting Access to Resources in a Web Application
Restricting Access to Resources in a Web
Application

To restrict access to specified resources (servlets, JSPs, or HTML pages) in your Web
Application, apply security constraints to those resources.

To configure a security constraint:

1. Open the web.xml and weblogic.xml deployment descriptors in a text editor or
in the Administration Console. For more information, see “Web Application
Developer Tools” on page 1-7.

2. In the WebLogic-specific deployment descriptor, weblogic.xml, define a role
that is mapped to one or more principals in a security realm. Define roles with the
“security-role” on page A-22. Then map these roles to principals in your realm
with the “security-role-assignment” on page B-2.

3. In web.xml, define which resources in the Web Application the security
constraint applies to by using the <url-pattern> element that is nested inside
the <web-resource-collection> element. The <url-pattern> can refer to a
directory, filename, or a <servlet-mapping>.

Alternatively, to apply the security constraint to the entire Web Application, use
the following entry:
<url-pattern>/</url-pattern>

4. In web.xml, define the HTTP method(s) (GET or POST) that the security
constraint applies to by defining the <http-method> element that is nested
inside the <web-resource-collection> element. Use separate
<http-method> elements for each HTTP method.

5. In web.xml, define whether to use SSL for communication between client and
server using the <transport-guarantee> element nested inside of the
<user-data-constraint> method.
Assembling and Configuring Web Applications 5-5

5 Configuring Security in Web Applications
Listing 5-1 Sample Security Constraint

web.xml entries:
<security-constraint>

<web-resource-collection>
<web-resource-name>SecureOrdersEast</web-resource-name>
<description>

Security constraint for
 resources in the orders/east directory

</description>
<url-pattern>/orders/east/*</url-pattern>
<http-method>POST</http-method>
<http-method>GET</http-method>

</web-resource-collection>
<auth-constraint>

<description>
constraint for east coast sales
</description>
<role-name>east</role-name>
<role-name>manager</role-name>

</auth-constraint>
<user-data-constraint>

<description>SSL not required</description>
<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>
</security-constraint>

...

Using Users and Roles Programmatically in
Servlets

You can write your servlets to access users and roles programmatically in your servlet
code using the method
javax.servlet.http.HttpServletRequest.isUserInRole(String role).
The string role is mapped to the name supplied in the <role-name> element nested
inside the <security-role-ref> element of a <servlet> declaration in the Web
5-6 Assembling and Configuring Web Applications

Using Users and Roles Programmatically in Servlets
Application deployment descriptor. The <role-link> element maps to a
<role-name> defined in the <security-role> element of the Web Application
deployment descriptor.

The following listing provides an example.

Listing 5-2 Example of Security Role Mapping

Servlet code:
isUserInRole("manager");

web.xml entries:

<servlet>
. . .

<role-name>manager</role-name>
<role-link>mgr</role-link>

. . .
</servlet>

<security-role>
<role-name>mgr</role-name>

</security-role>

weblogic.xml entries:

<security-role-assignment>
<role-name>mgr</role-name>
<principal-name>al</principal-name>
<principal-name>george</principal-name>
<principal-name>ralph</principal-name>

</security-role-ref>
Assembling and Configuring Web Applications 5-7

5 Configuring Security in Web Applications
5-8 Assembling and Configuring Web Applications

CHAPTER
6 Application Events and
Listeners

The following sections describe how to configure and use Web Application events and
listeners:

“Overview of Application Events and Listeners” on page 6-1

“Servlet Context Events” on page 6-2

“HTTP Session Events” on page 6-3

“Configuring an Event Listener” on page 6-3

“Writing a Listener Class” on page 6-4

“Templates for Listener Classes” on page 6-5

“Additional Resources” on page 6-7

Overview of Application Events and
Listeners

Application events provide notifications of a change in state of the servlet context
(each Web Application uses its own servlet context) or of an HTTP session object. You
write event listener classes that respond to these changes in state and you configure and
deploy Application event and listener classes in a Web Application.
Assembling and Configuring Web Applications 6-1

6 Application Events and Listeners
For servlet context events, the event listener classes can receive notification when the
Web Application is deployed or is being undeployed (or when WebLogic Server shuts
down), and when attributes are added, removed, or replaced.

For HTTP session events, the event listener classes can receive notification when an
HTTP session is activated or is about to be passivated, and when an HTTP session
attribute is added, removed, or replaced.

Use Web Application events to:

Manage database connections when a Web Application is deployed or shuts
down

Create counters

Monitor the state of HTTP sessions and their attributes

Servlet Context Events

The following table lists the types of Servlet context events, the interface your event
listener class must implement to respond to the event, and the methods invoked when
the event occurs.

Type of Event Interface Method

Servlet context is
created.

javax.servlet.ServletContextListener contextInitialized()

Servlet context is
about to be shut
down.

javax.servlet.ServletContextListener contextDestroyed()

An attribute is
added.

javax.servlet.
ServletContextAttributesListener

attributeAdded()

An attribute is
removed.

javax.servlet.
ServletContextAttributesListener

attributeRemoved()

An attribute is
replaced.

javax.servlet.
ServletContextAttributesListener

attributeReplaced()
6-2 Assembling and Configuring Web Applications

HTTP Session Events
HTTP Session Events

The following table lists the types of HTTP session events, the interface your event
listener class must implement to respond to the event, and the methods invoked when
the event occurs.

Note: The Servlet 2.3 specification also contains the
javax.servlet.http.HttpSessionBindingListener and the
javax.servlet.http.HttpSessionActivationListener interfaces.
These interfaces are implemented by objects that are stored as session
attributes and do not require registration of an event listener in web.xml. For
more information, see the Javadocs for these interfaces.

Configuring an Event Listener

To configure an event listener:

Type of Event Interface Method

An HTTP session is
activated.

javax.servlet.http.
HttpSessionListener

sessionCreated()

An HTTP session is
about to be passivated.

javax.servlet.http.
HttpSessionListener

sessionDestroyed()

An attribute is added. javax.servlet.http.
HttpSessionAttributeListener

attributeAdded()

An attribute is
removed.

javax.servlet.http.
HttpSessionAttributeListener

attributeRemoved()

An attribute is
replaced.

javax.servlet.http.
HttpSessionAttributeListener

attributeReplaced()
Assembling and Configuring Web Applications 6-3

6 Application Events and Listeners
1. Open the web.xml deployment descriptor of the Web Application for which you
are creating an event listener in a text editor, or use the Web Application
Deployment Descriptor Editor (see Web Application Deployment Descriptor
Editor Help at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/web_application_dd
e.html.) The web.xml file is located in the WEB-INF directory of your Web
Application.

2. Add an event declaration using the <listener> element. The event declaration
defines the listener class that is invoked when the event occurs. The <listener>
element must directly follow the <filter> and <filter-mapping> elements
and directly precede the <servlet> element. You can specify more than one
listener class for each type of event. WebLogic Server invokes the event listeners
in the order that they appear in the deployment descriptor (except for shutdown
events, which are invoked in the reverse order). For example:

<listener>
<listener-class>myApp.myContextListenerClass</listener-class>

</listener>

<listener>
<listener-class>myApp.mySessionAttributeListenerClass</listen

er-class>
</listener>

3. Write and deploy the Listener class. See the next section, Writing a Listener
Class, for details.

Writing a Listener Class

To write a listener class:

1. Create a new class that implements the appropriate interface for the type of event
your class responds to. For a list of these interfaces, see “Servlet Context Events”
on page 6-2 or “HTTP Session Events” on page 6-3. See “Templates for Listener
Classes” on page 6-5 for sample templates you can use to get started.

2. Create a public constructor that takes no arguments.
6-4 Assembling and Configuring Web Applications

http://e-docs.bea.com/wls/docs70/ConsoleHelp/web_application_dde.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/web_application_dde.html

Templates for Listener Classes
3. Implement the required methods of the interface. See the J2EE API Reference
(Javadocs) at http://java.sun.com/j2ee/tutorial/api/index.html for
more information.

4. Copy the compiled event listener classes into the WEB-INF/classes directory of
the Web Application, or package them into a jar file and copy the jar file into
the WEB-INF/lib directory of the Web Application.

The following useful classes are passed into the listener methods in a listener class:

javax.servlet.http.HttpSessionEvent
provides access to the HTTP session object

javax.servlet.ServletContextEvent
provides access to the servlet context object.

javax.servlet.ServletContextAttributeEvent
provides access to servlet context and its attributes

javax.servlet.http.HttpSessionBindingEvent
provides access to an HTTP session and its attributes

Templates for Listener Classes

The following examples provide some basic templates for listener classes.

Servlet Context Listener Example

package myApp;
import javax.servlet.*;

public final class myContextListenerClass implements
 ServletContextListener {

public void contextInitialized(ServletContextEvent event) {

/* This method is called when the servlet context is
initialized(when the Web Application is deployed).
You can initialize servlet context related data here.

*/
Assembling and Configuring Web Applications 6-5

http://java.sun.com/j2ee/tutorial/api/index.html
http://java.sun.com/j2ee/tutorial/api/index.html

6 Application Events and Listeners
 }

 public void contextDestroyed(ServletContextEvent event) {

/* This method is invoked when the Servlet Context
(the Web Application) is undeployed or
WebLogic Server shuts down.

*/

}
}

HTTP Session Attribute Listener Example

package myApp;
import javax.servlet.*;

public final class mySessionAttributeListenerClass implements
 HttpSessionAttributeListener {

public void attributeAdded(HttpSessionBindingEvent sbe) {
/* This method is called when an attribute

is added to a session.
*/

}

public void attributeRemoved(HttpSessionBindingEvent sbe) {
/* This method is called when an attribute

is removed from a session.
*/

 }

public void attributeReplaced(HttpSessionBindingEvent sbe) {
/* This method is invoked when an attibute

is replaced in a session.
*/

 }
}

6-6 Assembling and Configuring Web Applications

Additional Resources
Additional Resources

Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs70/webapp/index.html

Writing Web Application Deployment Descriptors at
http://e-docs.bea.com/wls/docs70/webapp/webappdeployment.html

Servlet 2.3 Specification from Sun Microsystems at
http://java.sun.com/aboutJava/communityprocess/first/jsr053/ind
ex.html

J2EE API Reference (Javadocs) at
http://java.sun.com/j2ee/tutorial/api/index.html

The J2EE Tutorial from Sun Microsystems: at
http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html
Assembling and Configuring Web Applications 6-7

http://e-docs.bea.com/wls/docs70/webapp/index.html
http://e-docs.bea.com/wls/docs70/webapp/webappdeployment.html
http://java.sun.com/aboutJava/communityprocess/first/jsr053/index.html
http://java.sun.com/j2ee/tutorial/api/index.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html

6 Application Events and Listeners
6-8 Assembling and Configuring Web Applications

CHAPTER
7 Filters

The following sections provide information about using filters in a Web Application:

“Overview of Filters” on page 7-1

“Configuring Filters” on page 7-3

“Writing a Filter” on page 7-5

“Example of a Filter Class” on page 7-7

“Filtering the Servlet Response Object” on page 7-8

“Additional Resources” on page 7-8

Overview of Filters

A filter is a Java class that is invoked in response to a request for a resource in a Web
Application. Resources include Java Servlets, JavaServer pages (JSP), and static
resources such as HTML pages or images. A filter intercepts the request and can
examine and modify the response and request objects or execute other tasks.

Filters are an advanced J2EE feature primarily intended for situations where the
developer cannot change the coding of an existing resource and needs to modify the
behavior of that resource. Generally, it is more efficient to modify the code to change
the behavior of the resource itself rather than using filters to modify the resource. In
some situations, using filters can add unnecessary complexity to an application and
degrade performance.
Assembling and Configuring Web Applications 7-1

7 Filters
How Filters Work

You define filters in the context of a Web Application. A filter intercepts a request for
a specific named resource or a group of resources (based on a URL pattern) and
executes the code in the filter. For each resource or group of resources, you can specify
a single filter or multiple filters that are invoked in a specific order, called a chain.

When a filter intercepts a request, it has access to the
javax.servlet.ServletRequest and javax.servlet.ServletResponse
objects that provide access to the HTTP request and response, and a
javax.servlet.FilterChain object. The FilterChain object contains a list of
filters that can be invoked sequentially. When a filter has completed its work, the filter
can either call the next filter in the chain, block the request, throw an exception, or
invoke the originally requested resource.

After the original resource is invoked, control is passed back to the filter at the bottom
of the list in the chain. This filter can then examine and modify the response headers
and data, block the request, throw an exception, or invoke the next filter up from the
bottom of the chain. This process continues in reverse order up through the chain of
filters.

Uses for Filters

Filters can be useful for the following functions:

Implementing a logging function

Implementing user-written security functionality

Debugging

Encryption

Data compression

Modifying the response sent to the client. (However, post processing the
response can degrade the performance of your application.)
7-2 Assembling and Configuring Web Applications

Configuring Filters
Configuring Filters

You configure filters as part of a Web Application, using the application’s web.xml
deployment descriptor. In the deployment descriptor, you declare the filter and then
map the filter to a URL pattern or to a specific servlet in the Web Application. You can
declare any number of filters.

Configuring a Filter

To configure a filter:

1. Open the web.xml deployment descriptor in a text editor or use the Administration
Console. For more information, see “Web Application Developer Tools” on page
1-7. The web.xml file is located in the WEB-INF directory of your Web
Application.

2. Add a filter declaration. The <filter> element declares a filter, defines a name
for the filter, and specifies the Java class that executes the filter. The <filter>
element must directly follow the <context-param> element and directly
precede the <listener> and <servlet> elements. For example:

<filter>
<icon>
<small-icon>MySmallIcon.gif</small-icon>
<large-icon>MyLargeIcon.gif</large-icon>

</icon>
<filter-name>myFilter1</filter-name>
<display-name>filter 1</display-name>
<description>This is my filter</description>
<filter-class>examples.myFilterClass</filter-class>

</filter>

The icon, description, and display-name elements are optional.

3. Specify one or more initialization parameters inside a <filter> element. For
example:

<filter>
<icon>
<small-icon>MySmallIcon.gif</small-icon>
<large-icon>MyLargeIcon.gif</large-icon>
Assembling and Configuring Web Applications 7-3

7 Filters
</icon>
<filter-name>myFilter1</filter-name>
<display-name>filter 1</display-name>
<description>This is my filter</description>
<filter-class>examples.myFilterClass</filter-class>
<init-param>
<param-name>myInitParam</param-name>
<param-value>myInitParamValue</param-value>

</init-param>
</filter>

Your Filter class can read the initialization parameters using the
FilterConfig.getInitParameter() or
FilterConfig.getInitParameters() methods.

4. Add filter mappings. The <filter-mapping> element specifies which filter to
execute based on a URL pattern or servlet name. The <filter-mapping>
element must immediately follow the <filter> element(s).

To create a filter mapping using a URL pattern, specify the name of the filter
and a URL pattern. URL pattern matching is performed according to the
rules specified in the Servlet 2.3 Specification from Sun Microsystems at
http://java.sun.com/aboutJava/communityprocess/first/jsr053/
index.html, in section 11.1. For example, the following filter-mapping
maps myFilter to requests that contain /myPattern/.

<filter-mapping>
<filter-name>myFilter</filter-name>
<url-pattern>/myPattern/*</url-pattern>

</filter-mapping>

To create a filter mapping for a specific servlet, map the filter to the name of
a servlet that is registered in the Web Application. For example, the
following code maps the myFilter filter to a servlet called myServlet:

<filter-mapping>
<filter-name>myFilter</filter-name>
<servlet-hame>myServlet</servlet-name>

</filter-mapping>

5. To create a chain of filters, specify multiple filter mappings. For more
information, see “Configuring a Chain of Filters” on page 7-5.
7-4 Assembling and Configuring Web Applications

http://java.sun.com/aboutJava/communityprocess/first/jsr053/index.html

Writing a Filter
Configuring a Chain of Filters

WebLogic Server creates a chain of filters by creating a list of all the filter mappings
that match an incoming HTTP request. The ordering of the list is determined by the
following sequence:

1. Filters where the filter-mapping contains a url-pattern that matches the
request are added to the chain in the order they appear in the web.xml deployment
descriptor.

2. Filters where the filter-mapping contains a servlet-name that matches the
request are added to the chain after the filters that match a URL pattern.

3. The last item in the chain is always the originally requested resource.

In your filter class, use the FilterChain.doFilter() method to invoke the next
item in the chain.

Writing a Filter

To write a filter class, implement the javax.servlet.Filter interface (see
http://java.sun.com/j2ee/tutorial/api/javax/servlet/Filter.html).
You must implement the following methods of this interface:

init()

destroy()

doFilter()

You use the doFilter() method to examine and modify the request and response
objects, perform other tasks such as logging, invoke the next filter in the chain, or
block further processing.

Several other methods are available on the FilterConfig object for accessing the
name of the filter, the ServletContext and the filter’s initialization attributes. For
more information see the J2EE Javadocs from Sun Microsystems for
javax.servlet.FilterConfig. Javadocs are available at
http://java.sun.com/j2ee/tutorial/api/index.html.
Assembling and Configuring Web Applications 7-5

http://java.sun.com/j2ee/tutorial/api/javax/servlet/Filter.html
http://java.sun.com/j2ee/tutorial/api/index.html

7 Filters
To access the next item in the chain (either another filter or the original resource, if
that is the next item in the chain), call the FilterChain.doFilter() method.
7-6 Assembling and Configuring Web Applications

Example of a Filter Class
Example of a Filter Class

The following code example demonstrates the basic structure of a Filter class.

Listing 7-1 Filter Class Example

import javax.servlet.*;
public class Filter1Impl implements Filter
{
 private FilterConfig filterConfig;

 public void doFilter(ServletRequest req,
ServletResponse res, FilterChain fc)

 throws java.io.IOException, javax.servlet.ServletException
 {

// Execute a task such as logging.
//...

 fc.doFilter(req,res); // invoke next item in the chain --
// either another filter or the
// originally requested resource.

 }

 public FilterConfig getFilterConfig()
 {
 // Execute tasks
 return filterConfig;
 }

 public void setFilterConfig(FilterConfig cfg)
 {
 // Execute tasks
 filterConfig = cfg;
 }
}

Assembling and Configuring Web Applications 7-7

7 Filters
Filtering the Servlet Response Object

You can use filters to post-process the output of a servlet by appending data to the
output generated by the servlet. However, in order to capture the output of the servlet,
you must create a wrapper for the response. (You cannot use the original response
object, because the output buffer of the servlet is automatically flushed and sent to the
client when the servlet completes executing and before control is returned to the last
filter in the chain.) When you create such a wrapper, WebLogic Server must
manipulate an additional copy of the output in memory, which can degrade
performance.

For more information on wrapping the response or request objects, see the J2EE
javadocs from Sun Microsystems for
javax.servlet.http.HttpServletResponseWrapper and
javax.servlet.http.HttpServletRequestWrapper. Javadocs are available at
http://java.sun.com/j2ee/tutorial/api/index.html.

Additional Resources

Writing Web Application Deployment Descriptors at
http://e-docs.bea.com/wls/docs70/webapp/webappdeployment.html

Servlet 2.3 Specification from Sun Microsystems at
http://java.sun.com/aboutJava/communityprocess/first/jsr053/ind
ex.html

J2EE API Reference (Javadocs) at
http://java.sun.com/j2ee/tutorial/api/index.html

The J2EE Tutorial from Sun Microsystems at
http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html
7-8 Assembling and Configuring Web Applications

http://java.sun.com/j2ee/tutorial/api/index.html
http://java.sun.com/j2ee/tutorial/api/index.html
http://e-docs.bea.com/wls/docs70/webapp/webappdeployment.html
http://java.sun.com/aboutJava/communityprocess/first/jsr053/index.html
http://java.sun.com/j2ee/tutorial/api/index.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html

CHAPTER
8 Writing Web
Application
Deployment
Descriptors

The following sections describe how to write Web Application deployment
descriptors:

“Overview of Web Application Deployment Descriptors” on page 8-2

“Tools for Editing Deployment Descriptors” on page 8-2

“Writing the web.xml Deployment Descriptor” on page 8-3

“Sample web.xml” on page 8-21

“Writing the WebLogic-Specific Deployment Descriptor (weblogic.xml)” on
page 8-23
Assembling and Configuring Web Applications 8-1

8 Writing Web Application Deployment Descriptors
Overview of Web Application Deployment
Descriptors

WebLogic Server uses the standard J2EE web.xml deployment descriptor for defining
a Web Application. Some applications also require the WebLogic-specific deployment
descriptor, weblogic.xml. You use these deployment descriptors to define
components and operating parameters for a Web Application. Deployment descriptors
are standard text files, formatted using XML notation. You package them in the Web
Application. For more information on Web Applications, see “Web Applications
Basics” on page 1-1.

The deployment descriptor web.xml is defined by the Servlet 2.3 specification from
Sun Microsystems. This deployment descriptor can be used to deploy a Web
Application on any J2EE-compliant application server.

The deployment descriptor weblogic.xml defines deployment properties that are
specific to a Web Application running on WebLogic Server. weblogic.xml is not
required for all Web Applications.

Tools for Editing Deployment Descriptors

To edit a deployment descriptor, you can use one of several tools:

Use the deployment descriptor editor that is integrated into the WebLogic Server
Administration Console. For more information, see Web Application
Deployment Descriptor Editor Help at
{DOCROOT}/ConsoleHelp/web_application_dde.html.

Use any plain text editor, for example Windows Notepad, emacs, vi, or your
favorite IDE.

Use WebLogic Builder, a graphic tool for generating and editing deployment
descriptors for applications to be deployed on WebLogic Server. See WebLogic
Builder Online Help at http://e-docs.bea.com/wls/docs70/wlbuilder/index.html.
8-2 Assembling and Configuring Web Applications

http://e-docs.bea.com/wls/docs70/ConsoleHelp/web_application_dde.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/web_application_dde.html
http://e-docs.bea.com/wls/docs70/wlbuilder/index.html
http://e-docs.bea.com/wls/docs70/wlbuilder/index.html

Writing the web.xml Deployment Descriptor
The WebLogic XML editor can be used on Windows or Solaris machines and is
downloadable from BEA’s Dev2Dev Online at
http://dev2dev.bea.com/resourcelibrary/utilitiestools/xml.jsp?highlight=utilitiesto
ols.

You can use the Ant utilities to create skeleton deployment descriptors. The Ant
task looks at a directory containing a Web Application and creates deployment
descriptors based on the files it finds in the Web Application. Since the Ant tasks
do not know all of the desired configurations, mappings, and other information,
the skeleton deployment descriptors it creates are incomplete. You can then use a
text editor, an XML editor, or the Administration Console to complete
configuration of your Web Application using the deployment descriptors.

For more information, see Packaging Web Applications at
http://e-docs.bea.com/wls/docs70/programming/packaging.html#pac
k005.

Writing the web.xml Deployment Descriptor

This section describes the steps to create the web.xml deployment descriptor.
Depending on the components in your Web application, you may not need to include
all of the elements listed here to configure and deploy your Web application.

The elements in the web.xml file must be entered in the order they are presented in
this document.

Main Steps to Create the web.xml File

“Step 1: Create a deployment descriptor file” on page 8-5

“Step 2: Create the DOCTYPE Statement” on page 8-5

“Step 3: Create the main body of the web.xml file” on page 8-6

“Step 4: Define deployment-time attributes” on page 8-6

“Step 5: Define context parameters” on page 8-7
Assembling and Configuring Web Applications 8-3

http://dev2dev.bea.com/resourcelibrary/utilitiestools/xml.jsp?highlight=utilitiestools
http://e-docs.bea.com/wls/docs70/programming/packaging.html#pack005

8 Writing Web Application Deployment Descriptors
“Step 6: Configure Filters (Servlet 2.3 specification only)” on page 8-8

“Step 7: Define Filter Mappings (Servlet 2.3 specification only)” on page 8-9

“Step 8: Configure Application Listeners (Servlet 2.3 specification only)” on
page 8-9

“Step 9: Deploy Servlets” on page 8-9

“Step 10: Map a servlet to a URL” on page 8-12

“Step 11: Define the session timeout value” on page 8-13

“Step 12: Define MIME mapping” on page 8-13

“Step 13: Define welcome pages” on page 8-14

“Step 14: Define error pages” on page 8-14

“Step 15: Define a JSP tag library descriptor” on page 8-15

“Step 16: Reference external resources” on page 8-16

“Step 17: Set up security constraints” on page 8-16

“Step 18: Set up login authentication” on page 8-18

“Step 19: Define security roles” on page 8-19

“Step 20: Set environment entries” on page 8-20

“Step 21: Reference Enterprise JavaBean (EJB) resources” on page 8-20

If you have installed the WebLogic Server samples and examples, you can look at the
web.xml and weblogic.xml files in the Pet Store sample to see a working example
of Web application deployment descriptors. These files are located in the
/samples/PetStore/source/dd/war/WEB-INF directory of your WebLogic
Server distribution.
8-4 Assembling and Configuring Web Applications

Writing the web.xml Deployment Descriptor
Detailed Steps to Create the web.xml File

Step 1: Create a deployment descriptor file

Name the file web.xml and place it under the WEB-INF directory of the Web
application. Use any text editor.

Step 2: Create the DOCTYPE Statement

The DOCTYPE statement refers to the location and version of the Document Type
Definition (DTD) file for the deployment descriptor. Although this header references
an external URL at java.sun.com, WebLogic Server contains its own copy of the
DTD file, so your host server need not have access to the Internet. However, you must
still include this <!DOCTYPE...> element in your web.xml file, and have it reference
the external URL because the version of the DTD contained in this element is used to
identify the version of this deployment descriptor.

Use one of the following DOCTYPE statements:

If you are using any of the features of the Servlet 2.3 Specification, such as
Filters or Application Events, use the following DOCTYPE statement:

<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

Note: The implementation of version 2.3 of the Servlet Specification is based on
the Proposed Final Draft 1 of the servlet specification and is subject to change.
If you are planning to use features introduced in version 2.3, note that the
specification has not been finalized and could change in the future. Features
added with Proposed Final Draft 2 are not supported.

If you do not need to use features of the Servlet 2.3 specification, use the
following DOCTYPE statement:

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//
DTD WebApplication 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">
Assembling and Configuring Web Applications 8-5

8 Writing Web Application Deployment Descriptors
Step 3: Create the main body of the web.xml file

Wrap all of your entries within a pair of opening and closing <web-app> tags.

In XML, properties are defined by surrounding a property name or value with opening
and closing tags as shown above. The opening tag, the body (the property name or
value), and the closing tag are collectively called an element. Some elements do not
use the surrounding tags, but instead use a single tag that contains attributes called an
empty-tag. Elements contained within other elements are indented in this text for
clarity. Indenting is not necessary in an XML file.

The body of the <web-app> element itself contains additional elements that determine
how the Web application will run on WebLogic Server. The order of the tag elements
within the file must follow the order reflected in this document. This ordering is
defined in the Document Type Definition (DTD) file.

Step 4: Define deployment-time attributes

These tags provide information for the deployment tools or the application server
resource management tools. These values are not used by WebLogic Server in this
release.

<web-app>

All elements describing this Web application
 go within the <web-app> element.

</web-app>

<icon> (Optional)

<small-icon>
iconfile.gif(jpg)

</small-icon>

(Optional)

<large-icon>
iconfile.gif(jpg)

</large-icon>

(Optional)

</icon>

<display-name>
application-name

</display-name>

(Optional)
8-6 Assembling and Configuring Web Applications

Writing the web.xml Deployment Descriptor
Step 5: Define context parameters

The context-param element declares servlet context initialization parameters for a
Web Application. These are parameters that you define to be available throughout your
Web application. You set each context-param within a single context-param
element, using <param-name> and <param-value> elements. You can access these
parameters in your code using the
javax.servlet.ServletContext.getInitParameter() and
javax.servlet.ServletContext.getInitParameterNames() methods.

<description>
descriptive-text

</description>

(Optional)

<distributable/> (Optional)

<context-param> For more information,
see “context-param”
on page A-4.

<param-name>
user-defined

 param name
</param-name>

(Required)

<param-value>
user-defined value

</param-value>

(Required)

<description
text description

</description>

(Optional)

</context-param>
Assembling and Configuring Web Applications 8-7

8 Writing Web Application Deployment Descriptors
Step 6: Configure Filters (Servlet 2.3 specification only)

Each filter has a name and a filter class. (For more information on filters, see
“Configuring Filters” on page 7-3). A filter can also use initialization parameters. The
following elements define a filter:

<filter> For more information,
see “filter” on page
A-5.

<icon>

<small-icon>
iconfile

</small-icon>

<large-icon>
iconfile

</large-icon>

</icon>

(Optional)

<filter-name>
Filter name

</filter-name>

(Required)

<display-name>
Filter Display Name

</display-name>

(Optional)

<description>
...text...
</description>

(Optional)

<filter-class>
package.name.MyFilterClass

</filter-class>

(Required)

<init-param> (Optional).

<param-name>
name

</param-name>

(Required)

<param-value>
value

</param-value>

(Required)

</init-param> (Optional)

</filter>
8-8 Assembling and Configuring Web Applications

Writing the web.xml Deployment Descriptor
Step 7: Define Filter Mappings (Servlet 2.3 specification only)

After you have declared a filter, map each filter to a URL pattern:

Step 8: Configure Application Listeners (Servlet 2.3 specification only)

Configure Web Application event listeners using a separate <listener> element for
each listener class:

For more information, see “Application Events and Listeners” on page 6-1.

Step 9: Deploy Servlets

To deploy a servlet, give the servlet a name, specify the class file or JSP used to
implement its behavior, and set other servlet-specific properties. List each servlet in
your Web application within separate <servlet>...</servlet> elements. After
you create entries for all your servlets, you must include elements that map the servlet
to a URL pattern. These mapping elements are described in “Step 10: Map a servlet to
a URL” on page 8-12.

<filter-mapping> For more information,
see “filter-mapping”
on page A-6.

<filter-name>
name

</filter-name>

(Required)

<url-pattern>
pattern

</url-pattern>

(Required)

</filter-mapping>

<listener> For more information,
see “listener” on page
A-7.

<listener-class>
my.foo.listener

</listener-class>

(Required)

</listener>
Assembling and Configuring Web Applications 8-9

8 Writing Web Application Deployment Descriptors
For more information, see “Configuring Servlets” on page 3-2

Use the following elements to declare a servlet:

<servlet> For more information,
see “servlet” on page
A-7.

<servlet-name>
name

</servlet-name>

(Required)

<servlet-class>
package.name.MyClass

</servlet-class>

-or-

<jsp-file>
/foo/bar/myFile.jsp

</jsp-file>

(Required)

<init-param> (Optional) For more
information, see
“init-param” on page
A-9.

<param-name>
name

</param-name>

(Required)

<param-value>
value

</param-value>

(Required)

<description>
...text...

</description>

</init-param>

(Optional)

<load-on-startup>
loadOrder

</load-on-startup>

(Optional)

<security-role-ref> (Optional).
For more information,
see “security-role-ref”
on page A-10.
8-10 Assembling and Configuring Web Applications

Writing the web.xml Deployment Descriptor
Here is an example of a servlet element that includes an initialization parameter.

<servlet>
...
<init-param>

 <param-name>feedbackEmail</param-name>
 <param-value>feedback123@beasys.com</param-value>
 <description>
 The email for web-site feedback.
 </description>

</init-param>
...
</servlet>

<description>
...text...

</description>

(Optional)

<role-name>
rolename

</role-name>

(Required)

<role-link>
rolelink

</role-link>

(Required)

</security-role-ref>

<small-icon>
iconfile

</small-icon>

(Optional)

<large-icon>
iconfile

</large-icon>

(Optional)

<display-name>
Servlet Name

</display-name>

 (Optional)

<description>
...text...

</description>

(Optional)

</servlet>
Assembling and Configuring Web Applications 8-11

8 Writing Web Application Deployment Descriptors
Step 10: Map a servlet to a URL

Once you declare your servlet or JSP using a <servlet> element, map it to one or
more URL patterns to make it a public HTTP resource. The use of URL patterns is
defined in the Servlet 2.3 specification from Sun Microsystems. For each mapping, use
a <servlet-mapping> element.

Here is an example of a <servlet-mapping> for the <servlet> declaration example
used earlier:

<servlet-mapping>
 <servlet-name>LoginServlet</servlet-name>
 <url-pattern>/login</url-pattern>
</servlet-mapping>

<servlet-mapping> For more information,
see “servlet-mapping”
on page A-11.

<servlet-name>
name

</servlet-name>

(Required)

<servlet-name>
pattern

</url-pattern>

(Required)

</servlet-mapping>
8-12 Assembling and Configuring Web Applications

Writing the web.xml Deployment Descriptor
Step 11: Define the session timeout value

Step 12: Define MIME mapping

To create a MIME mapping, you map a file extension to a MIME type.

<session-config> (Optional)

<session-timeout>
minutes

</session-timeout>

For more information,
see “session-config”
on page A-11.

</session-config>

<mime-mapping> (Optional)

Define MIME
types.

For more
information, see
“mime-mapping”
on page A-12.

<extension>
ext

</extension>

<mime-type>
mime type

</mime-type>

</mime-mapping>
Assembling and Configuring Web Applications 8-13

8 Writing Web Application Deployment Descriptors
Step 13: Define welcome pages

For more information, see “Configuring Welcome Pages” on page 3-7.

Step 14: Define error pages

For more information, see “Customizing HTTP Error Responses” on page 3-9.

<welcome-file-list> (Welcome pages are
Optional.)
For more information,
see
“welcome-file-list” on
page A-13.

<welcome-file>
myWelcomeFile.jsp

</welcome-file>

<welcome-file>
myWelcomeFile.html

</welcome-file>

See also “Configuring
Welcome Pages” on
page 3-7 and How
WebLogic Server
Resolves HTTP
Requests at
http://e-docs.bea.com/
wls/docs70/admingui
de/web_server.html#r
esolve_http_req.

</welcome-file-list>

<error-page> (Optional) Define a
customized page to
respond to errors.

For more information,
see “error-page” on
page A-13 and How
WebLogic Server
Resolves HTTP
Requests at
http://e-docs.bea.com/
wls/docs70/admingui
de/web_server.html#r
esolve_http_req.
8-14 Assembling and Configuring Web Applications

http://e-docs.bea.com/wls/docs70/adminguide/web_server.html#resolve_http_req
http://e-docs.bea.com/wls/docs70/adminguide/web_server.html#resolve_http_req
http://e-docs.bea.com/wls/docs70/adminguide/web_server.html#resolve_http_req
http://e-docs.bea.com/wls/docs70/adminguide/web_server.html#resolve_http_req
http://e-docs.bea.com/wls/docs70/adminguide/web_server.html#resolve_http_req
http://e-docs.bea.com/wls/docs70/adminguide/web_server.html#resolve_http_req

Writing the web.xml Deployment Descriptor
Step 15: Define a JSP tag library descriptor

For more information, see “Configuring JSP Tag Libraries” on page 3-6.

The following is an example of a taglib directive used in a JSP:

<%@ taglib uri="string_pattern" prefix="taglib" %>

For more details, see Programming WebLogic JSP Tag Extensions at
http://e-docs.bea.com/wls/docs70/taglib/index.html.

<error-code>
HTTP error code

</error-code>

-or-
<exception-type>

Java exception class
</exception-type>

<location>
URL

</location>

</error-page>

<taglib> (Optional) Identify
JSP tag libraries.
For more information,
see “taglib” on page
A-14.

<taglib-uri>
string_pattern

</taglib-uri>

(Required)

<taglib-location>
filename

</taglib-location>

(Required)

</taglib>
Assembling and Configuring Web Applications 8-15

http://e-docs.bea.com/wls/docs70/taglib/index.html

8 Writing Web Application Deployment Descriptors
Step 16: Reference external resources

For more information, see “Configuring Resources in a Web Application” on page
3-12.

Step 17: Set up security constraints

A Web application that uses security requires the user to log in in order to access its
resources. The user’s credentials are verified against a security realm, and once
authorized, the user will have access only to specified resources within the Web
application.

Security in a Web application is configured using three elements:

The <login-config> element specifies how the user is prompted to log in and
the location of the security realm. If this element is present, the user must be
authenticated in order to access any resource that is constrained by a
<security-constraint> defined in the Web application.

A <security-constraint> is used to define the access privileges to a
collection of resources via their URL mapping.

<resource-ref> (Optional)
For more information,
see “resource-ref” on
page A-16.

<res-ref-name>
name

</res-ref-name>

(Required)

<res-type>
Java class

</res-type>

(Required)

<res-auth>
CONTAINER | SERVLET

</res-auth>

(Required)

<res-sharing-scope>
Sharable | Unsharable

</res-sharing-scope>

(Optional)

</resource-ref> (Required)
8-16 Assembling and Configuring Web Applications

Writing the web.xml Deployment Descriptor
A <security-role> element represents a group or principal in the realm. This
security role name is used in the <security-constraint> element and can be
linked to an alternative role name used in servlet code via the
<security-role-ref> element.

For more information, see “Restricting Access to Resources in a Web Application” on
page 5-5.

<security-constraint> (Optional) For more
information, see
“security-constraint”
on page A-17.

<web-resource-collection> (Required) For more
information, see
“web-resource-collect
ion” on page A-17.

<web-resource-name>
name

</web-resource-name>

(Required)

<description>
...text...
</description>

(Optional)

<url-pattern>
pattern

</url-pattern>

(Optional)

<http-method>
GET | POST

</http-method>

(Optional)

</web-resource-collection>

<auth-constraint> (Optional)
For more information,
see “auth-constraint”
on page A-18.

<role-name>
group | principal

</role-name>

(Optional)

</auth-constraint>
Assembling and Configuring Web Applications 8-17

8 Writing Web Application Deployment Descriptors
Step 18: Set up login authentication

For more information, see “Setting Up Authentication for Web Applications” on page
5-2.

<user-data-constraint> (Optional)
For more information,
see
“user-data-constraint”
on page A-19.

<description>
...text...
</description>

(Optional)

<transport-guarantee>

NONE|INTEGRAL|CONFIDENTIAL

</transport-guarantee>

(Required)

</user-data-constraint>

</security-constraint>

<login-config> (Optional)
For more information,
see “login-config” on
page A-21.

<auth-method>
BASIC|FORM|CLIENT-CERT

</auth-method>

(Optional) Specifies
the method used to
authenticate the user.

<realm-name>
realmname

</realm-name>

(Optional) For more
information, see
Managing WebLogic
Sercurity at
http://e-docs.bea.com/
wls/docs70/secmanag
e/realm.html.
8-18 Assembling and Configuring Web Applications

http://e-docs.bea.com/wls/docs70/secmanage/realm.html
http://e-docs.bea.com/wls/docs70/secmanage/realm.html

Writing the web.xml Deployment Descriptor
Step 19: Define security roles

For more information, see “Configuring Security in Web Applications” on page 5-1.

<form-login-config> (Optional)
For more information,
see
“form-login-config”
on page A-22.
Use this element if
you configure the
<auth-method> to
FORM.

<form-login-page>
URI

</form-login-page>

(Required)

<form-error-page>
URI

</form-error-page>

</form-login-config>

(Required)

</login-config>

<security-role> (Optional)
For more information,
see “security-role” on
page A-22.

<description>
...text...

</description>

(Optional)

<role-name>
rolename

</role-name>

(Required)

</security-role>
Assembling and Configuring Web Applications 8-19

8 Writing Web Application Deployment Descriptors
Step 20: Set environment entries

For more information, see “Configuring Resources in a Web Application” on page
3-12.

Step 21: Reference Enterprise JavaBean (EJB) resources

For more information, see “Referencing EJBs in a Web Application” on page 3-15.

<env-entry> (Optional)
For more information,
see “env-entry” on
page A-23.

<description>
...text...

</description>

(Optional)

<env-entry-name>
name

</env-entry-name>

(Required)

<env-entry-value>
value

</env-entry-value>

(Required)

<env-entry-type>
type

</env-entry-type>

(Required)

</env-entry>

<ejb-ref> Optional)
For more information,
see “ejb-ref” on page
A-23.

<description>
...text...

</description>

(Optional)

<ejb-ref-name>
name

</ejb-ref-name>

(Required)
8-20 Assembling and Configuring Web Applications

Sample web.xml
Sample web.xml

Listing 8-1 Sample web.xml with Servlet Mapping, Welcome file, and Error
Page

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//
DTD Web Application 1.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>

<!-- The following servlet element defines a servlet called
servletA.
 The Java class of this servlet is servlets.servletA -->

<servlet>
<servlet-name>servletA</servlet-name>
<servlet-class>servlets.servletA</servlet-class>

</servlet>

<!-- The following servlet element defines another servlet called
 servletB. The Java class of this servlet is servlets.servletB -->

<servlet>

<ejb-ref-type>
Java type

</ejb-ref-type>

(Required)

<home>
mycom.ejb.AccountHome

</home>

(Required)

<remote>
mycom.ejb.Account

</remote>

(Required)

<ejb-link>
ejb.name

</ejb-link>

(Optional)

<run-as>
security role

</run-as>

(Optional)

</ejb-ref> (Required)
Assembling and Configuring Web Applications 8-21

8 Writing Web Application Deployment Descriptors
<servlet-name>servletB</servlet-name>
<servlet-class>servlets.servletB</servlet-class>

</servlet>

<!-- The following servlet-mapping maps the servlet called servletA
 (see the servlet element) to a url-pattern of "blue".
 The url-pattern is used when requesting this servlet, for example:
 http://host:port/myWebApp/blue. -->

<servlet-mapping>
<servlet-name>servletA</servlet-name>
<url-pattern>blue</url-pattern>

</servlet-mapping>

<!-- The following servlet-mapping maps the servlet called servletB
 (see the servlet element) to a url-pattern of "yellow".
 The url-pattern is used when requesting this servlet, for example:
 http://host:port/myWebApp/yellow. -->

<servlet-mapping>
<servlet-name>servletB</servlet-name>
<url-pattern>yellow</url-pattern>

</servlet-mapping>

<!--The following welcome-file-list specifies a welcome-file.
 Welcome files are discussed elsewhere in this document-->

<welcome-file-list>
<welcome-file>hello.html</welcome-file>

</welcome-file-list>

<!--The following error-page element specifies a page that is served
 in place of the standard HTTP error response pages, in this case
 HTTP error 404.-->

<error-page>
<error-code>404</error-code>
<location>/error.jsp</location>

</error-page>

</web-app>
8-22 Assembling and Configuring Web Applications

Writing the WebLogic-Specific Deployment Descriptor (weblogic.xml)
Writing the WebLogic-Specific Deployment
Descriptor (weblogic.xml)

The weblogic.xml file contains WebLogic-specific attributes for a Web application.
You define the following attributes in this file: HTTP session parameters, HTTP
cookie parameters, JSP parameters, resource references, security role assignments,
character set mappings, and container attributes.

If you define external resources such as DataSources, EJBs, or a Security realm in the
web.xml deployment descriptor, you can use any descriptive name to define the
resource. To access the resource, you then map this resource name to the actual name
of the resource in the JNDI tree using a file called weblogic.xml. Place this file in the
WEB-INF directory of your Web application.

If you have installed the WebLogic Server samples and examples, you can look at the
web.xml and weblogic.xml files in the Pet Store sample to see a working example
of Web application deployment descriptors. These files are located in the
/samples/PetStore/source/dd/war/WEB-INF directory of your WebLogic
Server distribution.

The ordering of the tag elements within the weblogic.xml file must follow the
ordering specified in this document.

Main Steps to Create the weblogic.xml File

“Step 1: Begin the weblogic.xml file with a DOCTYPE header” on page 8-24

“Step 2: Map security role names to a security realm” on page 8-25

“Step 3 Map resources to JNDI” on page 8-25

“Step 4: Define session parameters” on page 8-27

“Step 5: Define JSP parameters” on page 8-27

“Step 6: Define container parameters” on page 8-28

“Step 7: Define character set parameters” on page 8-28
Assembling and Configuring Web Applications 8-23

8 Writing Web Application Deployment Descriptors
“Step 8: Complete the descriptor file” on page 8-29

Detailed Steps to Create the weblogic.xml File

Step 1: Begin the weblogic.xml file with a DOCTYPE header

This header refers to the location and version of the DTD file for the deployment
descriptor. Although this header references an external URL at www.beasys.com,
WebLogic Server has its own copy of the DTD file, so your host server need not have
access to the Internet. However, you must still include this DOCTYPE element in your
weblogic.xml file, and have it reference the external URL since the version of the
DTD is used to identify the version of this deployment descriptor.

<!DOCTYPE weblogic-web-app PUBLIC "-//BEA
 Systems, Inc.//DTD Web Application 7.0//EN"
"http://www.bea.com/servers/wls700/dtd/weblogic
700-web-jar.dtd">

<weblogic-web-app>

<description>
Text description of the Web App

</description>

<weblogic-version>

</weblogic-version>

This element is not
used by WebLogic
Server.
8-24 Assembling and Configuring Web Applications

Writing the WebLogic-Specific Deployment Descriptor (weblogic.xml)
Step 2: Map security role names to a security realm

If you need to define multiple roles, define each additional pair of <role-name> and
<principal-name> tags within separate <security-role-assignment> elements.

Step 3 Map resources to JNDI

In this step you map resources used in your Web application to the JNDI tree. When
you define an <ejb-ref-name> or a <res-ref-name> in the web.xml deployment
descriptor, you also reference those names in weblogic.xml and map them to an
actual JNDI name that is available in WebLogic Server. In the following example, a
Data Source is referenced in a servlet with the name myDataSource. myDataSource
is then referenced in web.xml and its data type defined. Finally, in the weblogic.xml
file, myDataSource is mapped to the JNDI name accountDataSource, which is
available in the JNDI tree. The JNDI name must match the name of an object bound in
the JNDI tree. Objects can be bound to the JNDI tree programatically or by configuring
them in the Administration Console. For more information, see Programming
WebLogic JNDI at http://e-docs.bea.com/wls/docs70/jndi/index.html.

Servlet code:

javax.sql.DataSource ds = (javax.sql.DataSource) ctx.lookup
 ("myDataSource");

web.xml entries:

<resource-ref>
. . .

<res-ref-name>myDataSource</res-ref-name>
<res-type>javax.sql.DataSource</res-type>

<security-role-assignment>

<role-name>
name

</role-name>

(Required)
For more information,
see
“security-role-assign
ment” on page B-2.

<principal-name>
name

</principal-name>

(Required)

</security-role-assignment>
Assembling and Configuring Web Applications 8-25

http://e-docs.bea.com/wls/docs70/jndi/index.html
http://e-docs.bea.com/wls/docs70/jndi/index.html

8 Writing Web Application Deployment Descriptors
<res-auth>CONTAINER</res-auth>
. . .
</resource-ref>

weblogic.xml entries:

<resource-description>
<res-ref-name>myDataSource</res-ref-name>
<jndi-name>accountDataSource</jndi-name>

</security-role-ref>

A similar pattern is used to map EJBs to the JNDI tree, but uses the <ejb-ref-name>
element of the <ejb-reference-description> element in place of the
<res-ref-name> element of the <resource-description> element.

<reference-descriptor> For more information,
see
“reference-descriptor”
on page B-3.

<resource-description> For more information,
see
“resource-description
” on page B-4.

<res-ref-name>
name

</res-ref-name>

(Required)

<jndi-name>
JNDI name
of resource

</jndi-name>

(Required)

</resource-description>

<ejb-reference-
description>

<ejb-ref-name>
name

</ejb-ref-name>

(Required) For more
information, see
“ejb-reference-descrip
tion” on page B-4.

<jndi-name>
JNDI name of EJB

</jndi-name>

(Required)
8-26 Assembling and Configuring Web Applications

Writing the WebLogic-Specific Deployment Descriptor (weblogic.xml)
Step 4: Define session parameters

You define HTTP session parameters for this Web application inside of
<session-param> tags, which are nested inside <session-descriptor> tags.
For each <session-param> you need to supply a
<param-name>...</param-name> element that names the parameter being
defined and a <param-value>...</param-value> element that provides the
value of the parameter. For a list of HTTP session parameters and details on
setting them, see “jsp-descriptor” on page B-11.

.

Step 5: Define JSP parameters

You define JSP configuration parameters for this Web application inside of
<jsp-param> tags, which are nested in side <jsp-descriptor> tags. For each
<jsp-param> you need to supply a <param-name>...</param-name> element that

</ejb-reference-
description>

</reference-descriptor>

<session-descriptor> For more information,
see “jsp-descriptor”
on page B-11.

<session-param>

<param-name>
session param name

</param-name>

<param-value>
my value

</param-value>

</session-param>

</session-descriptor>
Assembling and Configuring Web Applications 8-27

8 Writing Web Application Deployment Descriptors
names the parameter being defined and a <param-value>...</param-value>
element that provides the value of the parameter. For a list of JSP parameters and
details on setting them, see “jsp-descriptor” on page B-11.

Step 6: Define container parameters

There is one valid, optional element you can enter in the <container-descriptor>
element, the <check-auth-on-forward> element.

Step 7: Define character set parameters

The optional <charset-params> element is used to define character set mappings.

<jsp-descriptor> For more information,
see “jsp-descriptor”
on page B-11.

<jsp-param>

<param-name>
jsp param name

</param-name>

<param-value>
my value

</param-value>

</jsp-param>

</jsp-descriptor>

<container-descriptor> For more information,
see “resolve indicates
the action.” on page
B-19.

<check-auth-on-forward/>

<redirect-with-absolute-url>
true|false

</redirect-with-absolute-url>
</container-descriptor>
8-28 Assembling and Configuring Web Applications

Writing the WebLogic-Specific Deployment Descriptor (weblogic.xml)
Step 8: Complete the descriptor file

Close the desciptor file with the following tag:

<charset-params> For more information,
see “resolve indicates
the action.” on page
B-19.

<input-charset>

<resource-path>
path to match

</resource-path>

<java-charset-name>
name of Java

 character set
</java-charset-name>

</input-charset>

<charset-mapping>

<iana-charset-name>
name of IANA
character set

</iana-charset-name>

<java-charset-name>
name of Java
character set

</java-charset-name>

</charset-mapping>

</charset-params>

</weblogic-web-app>
Assembling and Configuring Web Applications 8-29

8 Writing Web Application Deployment Descriptors
8-30 Assembling and Configuring Web Applications

CHAPTER
A web.xml Deployment
Descriptor Elements

This following sections describe the deployment descriptor elements defined in the
web.xml file. The root element for web.xml is <web-app>. The following elements
are defined within the <web-app> element:

“icon” on page A-2

“display-name” on page A-3

“description” on page A-3

“distributable” on page A-3

“context-param” on page A-4

“filter” on page A-5

“filter-mapping” on page A-6

“listener” on page A-7

“servlet” on page A-7

“servlet-mapping” on page A-11

“session-config” on page A-11

“mime-mapping” on page A-12

“welcome-file-list” on page A-13

“error-page” on page A-13

“taglib” on page A-14
Assembling and Configuring Web Applications A-1

A web.xml Deployment Descriptor Elements
“resource-env-ref” on page A-15

“resource-ref” on page A-16

“security-constraint” on page A-17

“login-config” on page A-21

“security-role” on page A-22

“env-entry” on page A-23

“ejb-ref” on page A-23

“ejb-local-ref” on page A-24

icon

The icon element specifies the location within the Web Application for a small and
large image used to represent the Web Application in a GUI tool. (The servlet
element also has an element called the icon element, used to supply an icon to represent
a servlet in a GUI tool.)

This element is not currently used by WebLogic Server.

The following table describes the elements you can define within an icon element.

Element Required/
Optional

Description

<small-icon> Optional Location for a small (16x16 pixel) .gif or .jpg image used to
represent the Web Application in a GUI tool. Currently, this is not used
by WebLogic Server.

<large-icon> Optional Location for a large (32x32 pixel) .gif or .jpg image used to
represent the Web Application in a GUI tool. Currently, this element is
not used by WebLogic Server.
A-2 Assembling and Configuring Web Applications

display-name
display-name

The optional display-name element specifies the Web Application display name, a
short name that can be displayed by GUI tools.

description

The optional description element provides descriptive text about the Web Application.

distributable

The distributable element is not used by WebLogic Server.

Element Required/
Optional

Description

<display-name> Optional Currently, this element is not used by WebLogic Server.

Element Required/
Optional

Description

<description> Optional Currently, this element is not used by WebLogic Server.

Element Required/
Optional

Description

<distributable> Optional Currently, this element is not used by WebLogic Server.
Assembling and Configuring Web Applications A-3

A web.xml Deployment Descriptor Elements
context-param

The optional context-param element declares a Web Application's servlet context
initialization parameters. You set each context-param within a single context-param
element, using <param-name> and <param-value> elements. You can access these
parameters in your code using the
javax.servlet.ServletContext.getInitParameter() and
javax.servlet.ServletContext.getInitParameterNames() methods.

The following table describes the elements you can define within a context-param
element.

Element Required/
Optional

Description

weblogic.httpd.
clientCertProxy

optional This attribute specifies that certs from clients of the web application
are provided in the special WL-Proxy-Client-Cert header sent by
a proxy plug-in or HttpClusterServlet.

This setting is useful if user authentication is performed on a proxy
server—setting clientCertProxy causes the proxy server to pass
on the certs to the cluster in a special header,
WL-Proxy-Client-Cert.

A WL-Proxy-Client-Cert header could be provided by any client
with access to WebLogic Server. WebLogic Server takes the certificate
information from that header, trusting that is came from a secure
source (the plug-in) and uses that information to authenticate the user.

Forthis reason, if you set clientCertProxy, use a connection filter
to ensure that WebLogic Server accepts connections only from the
machine on which the plug-in is running. See "Using Network
Connection Filters" in Programming WebLogic Security.

In addition to setting this attribute for an individual web application,
you can define this attribute:
• for all web applications hosted by a server instance, on the

Server-->Configuration-->General page in the Administration
Console

• for all web applications hosted by server instances in a cluster, on
the Cluster-->Configuration-->General page.
A-4 Assembling and Configuring Web Applications

filter
filter

The filter element defines a filter class and its initialization parameters.

The following table describes the elements you can define within a servlet element.

Element Required/
Optional

Description

<icon> Optional Specifies the location within the Web Application for a small and
large image used to represent the filter in a GUI tool. Contains a
small-icon and large-icon element.
Currently, this element is not used by WebLogic Server.

<filter-name> Required Defines the name of the filter, used to reference the filter definition
elsewhere in the deployment descriptor.

<display-name> Optional A short name intended to be displayed by GUI tools.

<description> Optional A text description of the filter.

<filter-class> Required The fully-qualified class name of the filter.

<init-param> Optional Contains a name/value pair as an initialization parameter of the filter.
Use a separate set of <init-param> tags for each parameter.
Assembling and Configuring Web Applications A-5

A web.xml Deployment Descriptor Elements
filter-mapping

The following table describes the elements you can define within a filter-mapping
element.

Element Required/
Optional

Description

<filter-name> Required The name of the filter to which you are mapping a URL pattern
or servlet. This name corresponds to the name assigned in the
<filter> element with the <filter-name> element.

<url-pattern> Required - or map
by <servlet>

Describes a pattern used to resolve URLs. The portion of the
URL after the http://host:port + ContextPath is
compared to the <url-pattern> by WebLogic Server. If
the patterns match, the filter mapped in this element is called.
Example patterns:
/soda/grape/*
/foo/*
/contents
*.foo

The URL must follow the rules specified in the Servlet 2.3
Specification.

<servlet> Required - or map
by
<url-pattern>

The name of a servlet which, if called, causes this filter to
execute.
A-6 Assembling and Configuring Web Applications

listener
listener

Define an application listener using the listener element.

For more information, see “Configuring an Event Listener” on page 6-3.

servlet

The servlet element contains the declarative data of a servlet.

If a jsp-file is specified and the <load-on-startup> element is present, then the
JSP is precompiled and loaded when WebLogic Server starts.

The following table describes the elements you can define within a servlet element.

Element Required/
Optional

Description

<listener-class> Optional Name of the class that responds to a Web Application event.

Element Required/
Optional

Description

<icon> Optional Location within the Web Application for a small and large image
used to represent the servlet in a GUI tool. Contains a small-icon and
large-icon element.
Currently, this element is not used by WebLogic Server.

<servlet-name> Required Defines the canonical name of the servlet, used to reference the
servlet definition elsewhere in the deployment descriptor.

<display-name> Optional A short name intended to be displayed by GUI tools.

<description> Optional A text description of the servlet.
Assembling and Configuring Web Applications A-7

A web.xml Deployment Descriptor Elements
icon

This is an element within the “servlet” on page A-7.

<servlet-class> Required (or
use <jsp-
file>)

The fully-qualified class name of the servlet.
Use only one of either the <servlet-class> tags or
<jsp-file> tags in your servlet body.

<jsp-file> Required (or
use
<servlet-
class>)

The full path to a JSP file within the Web Application, relative to the
Web Application root directory.
Use only one of either the <servlet-class> tags or
<jsp-file> tags in your servlet body.

<init-param> Optional Contains a name/value pair as an initialization parameter of the
servlet.
Use a separate set of <init-param> tags for each parameter.

<load-on-startup> Optional WebLogic Server initializes this servlet when WebLogic Server
starts up. The optional contents of this element must be a positive
integer indicating the order in which the servlet should be loaded.
Lower integers are loaded before higher integers. If no value is
specified, or if the value specified is not a positive integer, WebLogic
Server can load the servlet in any order in the startup sequence.

<security-role-
ref>

Optional Used to link a security role name defined by <security-role> to
an alternative role name that is hard coded in the servlet logic. This
extra layer of abstraction allows the servlet to be configured at
deployment without changing servlet code.

<run-as> Specifies the run-as identity to be used for the execution of the Web
application. It contains an optional description and the name of a
security role. Subelements of the run-as element are:

description—(optional) description of the run-as identity
role-name—this can be a role name that is mapped to a
principal name in weblogic.xml. If it is mapped to multiple
principal names, the first one is used. Otherwise, the role name
can be a valid principal-name (user name) in the system.

Element Required/
Optional

Description
A-8 Assembling and Configuring Web Applications

servlet
The icon element specifies the location within the Web Application for small and
large images used to represent the servlet in a GUI tool.

The following table describes the elements you can define within an icon element.

init-param

This is an element within the “servlet” on page A-7.

The optional init-param element contains a name/value pair as an initialization
parameter of the servlet. Use a separate set of init-param tags for each parameter.

You can access these parameters with the
javax.servlet.ServletConfig.getInitParameter() method.

The following table describes the elements you can define within a init-param
element.

Element Required/
Optional

Description

<small-icon> Optional Specifies the location within the Web Application for a small (16x16
pixel) .gif or .jpg image used to represent the servlet in a GUI tool.
Currently, this element is not used by WebLogic Server.

<large-icon> Optional Specifies the location within the Web Application for a small (32x32
pixel) .gif or .jpg image used to represent the servlet in a GUI tool.
Currently, this element is not used by WebLogic Server.

Element Required/
Optional

Description

<param-name> Required Defines the name of this parameter.

<param-value> Required Defines a String value for this parameter.

<description> Optional Text description of the initialization parameter.
Assembling and Configuring Web Applications A-9

A web.xml Deployment Descriptor Elements
WebLogic Server recognizes the special initialization parameter,
wl-dispatch-policy, to assign a servlet or JSP to an available execute queue. For
example, the following example assigns a servlet to use the execute threads available
in an execute queue named CriticalWebApp:

<servlet>
...
<init-param>

<param-name>wl-dispatch-policy</param-name>
<param-value>CriticalWebApp</param-value>

</init-param>
</servlet>

If the CriticalWebApp queue is not available, the servlet will use execute threads
available in the default WebLogic Server execute queue. See Setting Thread Count for
more information about configuring execute threads in WebLogic Server. See Using
Execute Queues to Control Thread Usage for more information about creating and
using queues.

security-role-ref

This is an element within the “servlet” on page A-7.

The security-role-ref element links a security role name defined by
<security-role> to an alternative role name that is hard-coded in the servlet logic. This
extra layer of abstraction allows the servlet to be configured at deployment without changing
servlet code.

The following table describes the elements you can define within a
security-role-ref element.

Element Required/
Optional

Description

<description> Optional Text description of the role.

<role-name> Required Defines the name of the security role or principal that is used in the
servlet code.

<role-link> Required Defines the name of the security role that is defined in a
<security-role> element later in the deployment descriptor.
A-10 Assembling and Configuring Web Applications

servlet-mapping
servlet-mapping

The servlet-mapping element defines a mapping between a servlet and a URL
pattern.

The following table describes the elements you can define within a servlet-mapping
element.

session-config

The session-config element defines the session parameters for this Web
Application.

Element Required/
Optional

Description

<servlet-name> Required The name of the servlet to which you are mapping a URL pattern. This
name corresponds to the name you assigned a servlet in a <servlet>
declaration tag.

<url-pattern> Required Describes a pattern used to resolve URLs. The portion of the URL after
the http://host:port + WebAppName is compared to the
<url-pattern> by WebLogic Server. If the patterns match, the
servlet mapped in this element will be called.
Example patterns:
/soda/grape/*
/foo/*
/contents
*.foo

The URL must follow the rules specified in the Servlet 2.3
Specification.
For additional examples of servlet mapping, see “Servlet Mapping” on
page 3-2.
Assembling and Configuring Web Applications A-11

A web.xml Deployment Descriptor Elements
The following table describes the element you can define within a session-config
element.

mime-mapping

The mime-mapping element defines a mapping between an extension and a mime
type.

The following table describes the elements you can define within a mime-mapping
element.

Element Required/
Optional

Description

<session-timeout> Optional The number of minutes after which sessions in this Web Application
expire. The value set in this element overrides the value set in the
TimeoutSecs parameter of the <session-descriptor>
element in the WebLogic-specific deployment descriptor
weblogic.xml, unless one of the special values listed here is
entered.
Default value: -2
Maximum value: Integer.MAX_VALUE ÷ 60
Special values:

-2 = Use the value set by TimeoutSecs in
<session-descriptor> element of weblogic.xml
-1 = Sessions do not timeout. The value set in
<session-descriptor> element of weblogic.xml is
ignored.

For more information, see “jsp-descriptor” on page B-11.

Element Required/
Optional

Description

<extension> Required A string describing an extension, for example: txt.

<mime-type> Required A string describing the defined mime type, for example:
text/plain.
A-12 Assembling and Configuring Web Applications

welcome-file-list
welcome-file-list

The optional welcome-file-list element contains an ordered list of
welcome-file elements.

When the URL request is a directory name, WebLogic Server serves the first file
specified in this element. If that file is not found, the server then tries the next file in
the list.

For more information, see “Configuring Welcome Pages” on page 3-7 and How
WebLogic Server Resolves HTTP Requests at
http://e-docs.bea.com/wls/docs70/adminguide/web_server.html#resolve_http_req.

The following table describes the element you can define within a
welcome-file-list element.

error-page

The optional error-page element specifies a mapping between an error code or
exception type to the path of a resource in the Web Application.

When an error occurs—while WebLogic Server is responding to an HTTP request, or
as a result of a Java exception—WebLogic Server returns an HTML page that displays
either the HTTP error code or a page containing the Java error message. You can define
your own HTML page to be displayed in place of these default error pages or in
response to a Java exception.

For more information, see “Customizing HTTP Error Responses” on page 3-9 and
How WebLogic Server Resolves HTTP Requests at
http://e-docs.bea.com/wls/docs70/adminguide/web_server.html#resolve_http_req.

Element Required/
Optional

Description

<welcome-file> Optional File name to use as a default welcome file, such as index.html
Assembling and Configuring Web Applications A-13

http://e-docs.bea.com/wls/docs70/adminguide/web_server.html#resolve_http_req
http://e-docs.bea.com/wls/docs70/adminguide/web_server.html#resolve_http_req
http://e-docs.bea.com/wls/docs70/adminguide/web_server.html#resolve_http_req

A web.xml Deployment Descriptor Elements
The following table describes the elements you can define within an error-page
element.

Note: Define either an <error-code> or an <exception-type> but not both.

taglib

The optional taglib element describes a JSP tag library.

This element associates the location of a JSP Tag Library Descriptor (TLD) with a URI
pattern. Although you can specify a TLD in your JSP that is relative to the WEB-INF
directory, you can also use the <taglib> tag to configure the TLD when deploying
your Web Application. Use a separate element for each TLD.

The following table describes the elements you can define within a taglib element.

Element Required/
Optional

Description

<error-code> Optional A valid HTTP error code, for example, 404.

<exception-type> Optional A fully-qualified class name of a Java exception type, for example,
java.lang.string

<location> Required The location of the resource to display in response to the error. For
example, /myErrorPg.html.

Element Required/
Optional

Description

<taglib-location> Required Gives the file name of the tag library descriptor relative to the root of
the Web Application. It is a good idea to store the tag library descriptor
file under the WEB-INF directory so it is not publicly available over an
HTTP request.

<taglib-uri> Required Describes a URI, relative to the location of the web.xml document,
identifying a Tag Library used in the Web Application.
If the URI matches the URI string used in the taglib directive on the
JSP page, this taglib is used.
A-14 Assembling and Configuring Web Applications

resource-env-ref
resource-env-ref

The resource-env-ref element contains a declaration of a Web application's
reference to an administered object associated with a resource in the Web application's
environment. It consists of an optional description, the resource environment reference
name, and an indication of the resource environment reference type expected by the
Web application code.

For example:

<resource-env-ref>

 <resource-env-ref-name>jms/StockQueue</resource-env-ref-name>

 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>

</resource-env-ref>

The following table describes the elements you can define within a
resource-env-ref element.

Element Required/
Optional

Description

<description> Optional Provides a description of the resource environment reference.

<resource-env-ref
-name>

Required Specifies the name of a resource environment reference; its value is the
environment entry name used in the Web application code. The name
is a JNDI name relative to the java:comp/env context and must be
unique within a Web application.

<resource-env-ref
-type>

Required Specifies the type of a resource environment reference. It is the fully
qualified name of a Java language class or interface.
Assembling and Configuring Web Applications A-15

A web.xml Deployment Descriptor Elements
resource-ref

The optional resource-ref element defines a reference lookup name to an external
resource. This allows the servlet code to look up a resource by a “virtual” name that is
mapped to the actual location at deployment time.

Use a separate <resource-ref> element to define each external resource name. The
external resource name is mapped to the actual location name of the resource at
deployment time in the WebLogic-specific deployment descriptor weblogic.xml.

The following table describes the elements you can define within a resource-ref
element.

Element Required/
Optional

Description

<description> Optional A text description.

<res-ref-name> Required The name of the resource used in the JNDI tree. Servlets in the Web
Application use this name to look up a reference to the resource.

<res-type> Required The Java type of the resource that corresponds to the reference name.
Use the full package name of the Java type.

<res-auth> Required Used to control the resource sign on for security.
If set to APPLICATION, indicates that the application component
code performs resource sign on programmatically. If set to
CONTAINER, WebLogic Server uses the security context established
with the login-config element. See “login-config” on page A-21.

<res-sharing-scop
e>

Optional Specifies whether connections obtained through the given resource
manager connection factory reference can be shared.
Valid values:

Shareable
Unshareable
A-16 Assembling and Configuring Web Applications

security-constraint
security-constraint

The security-constraint element defines the access privileges to a collection of
resources defined by the <web-resource-collection> element.

For more information, see “Configuring Security in Web Applications” on page 5-1.

The following table describes the elements you can define within a
security-constraint element.

web-resource-collection

Each <security-constraint> element must have one or more
<web-resource-collection> elements. These define the area of the Web
Application to which this security constraint is applied.

This is an element within the “security-constraint” on page A-17.

Element Required/
Optional

Description

<web-resource-
collection>

Required Defines the components of the Web Application to which this security
constraint is applied.

<auth-constraint> Optional Defines which groups or principals have access to the collection of
web resources defined in this security constraint. See also
“auth-constraint” on page A-18.

<user-data-
constraint>

Optional Defines how the client should communicate with the server.
See also “user-data-constraint” on page A-19.
Assembling and Configuring Web Applications A-17

A web.xml Deployment Descriptor Elements
The following table describes the elements you can define within a
web-resource-collection element.

auth-constraint

This is an element within the “security-constraint” on page A-17.

The optional auth-constraint element defines which groups or principals have
access to the collection of Web resources defined in this security constraint.

Note: An authorization constraint, which is defined using the <auth-constraint>
tag, establishes a requirement for authentication and names the authorization
roles, or security roles, permitted to perform the constrained requests. When
you use the <auth-constraint> tag to define an authorization constraint, be
advised of the following:

If you define an authorization constraint that does not name any security
roles, the container will not allow access to the constrained requests
under any circumstances.

If no authorization constraint applies to a request, the container must
accept the request without requiring user authentication.

Element Required/
Optional

Description

<web-resource-
name>

Required The name of this Web resource collection.

<description> Optional A text description of this security constraint.

<url-pattern> Optional Use one or more of the <url-pattern> elements to declare to which
URL patterns this security constraint applies. If you do not use at least
one of these elements, this <web-resource-collection> is
ignored by WebLogic Server.

<http-method> Optional Use one or more of the <http-method> elements to declare which
HTTP methods (usually, GET or POST) are subject to the authorization
constraint. If you omit the <http-method> element, the default
behavior is to apply the security constraint to all HTTP methods.
A-18 Assembling and Configuring Web Applications

security-constraint
For more information on authorization constraints, see the Java Servlet
Specification Version 2.4 specification located on the Internet at
http://jcp.org/aboutJava/communityprocess/final/jsr154/inde
x.html.

The following table describes the elements you can define within an
auth-constraint element.

user-data-constraint

This is an element within the “security-constraint” on page A-17.

The user-data-constraint element defines how the client should communicate
with the server.

The following table describes the elements you may define within a
user-data-constraint element.

Element Required/
Optional

Description

<description> Optional A text description of this security constraint.

<role-name> Optional Defines which security roles can access resources defined in this
security-constraint. Security role names are mapped to principals using
the security-role-ref. See “security-role-ref” on page A-10.

Element Required/
Optional

Description

<description> Optional A text description.
Assembling and Configuring Web Applications A-19

A web.xml Deployment Descriptor Elements
<transport-
guarantee>

Required Specifies that the communication between client and server.
WebLogic Server establishes a Secure Sockets Layer (SSL)
connection when the user is authenticated using the INTEGRAL or
CONFIDENTIAL transport guarantee.
Range of values:

NONE—The application does not require any transport guarantees.
INTEGRAL—The application requires that the data be sent between
the client and server in such a way that it cannot be changed in
transit.
CONFIDENTIAL—The application requires that data be
transmitted so as to prevent other entities from observing the
contents of the transmission.

Element Required/
Optional

Description
A-20 Assembling and Configuring Web Applications

login-config
login-config

Use the optional login-config element to configure how the user is authenticated;
the realm name that should be used for this application; and the attributes that are
needed by the form login mechanism.

If this element is present, the user must be authenticated in order to access any resource
that is constrained by a <security-constraint> defined in the Web Application.
Once authenticated, the user can be authorized to access other resources with access
privileges.

The following table describes the elements you can define within a login-config
element.

Element Required/
Optional

Description

<auth-method> Optional Specifies the method used to authenticate the user. Possible values:
BASIC - uses browser authentication
FORM - uses a user-written HTML form
CLIENT-CERT

<realm-name> Optional The name of the realm that is referenced to authenticate the user
credentials. If omitted, the realm defined with the Auth Realm Name
field on the Web Application→ Configuration→Other tab of the
Administration Console is used by default. For more information, see
Managing WebLogic Security at
http://e-docs.bea.com/wls/docs70/secmanage/realm.html.

Note: The <realm-name> element does not refer to security
realms within WebLogic Server. This element defines the
realm name to use in HTTP Basic authorization.

Note: The system security realm is a collection of security
information that is checked when certain operations are
performed in the server. The servlet security realm is a
different collection of security information that is checked
when a page is accessed and basic authentication is used.

<form-login-
config>

Optional Use this element if you configure the <auth-method> to FORM.
See “form-login-config” on page A-22.
Assembling and Configuring Web Applications A-21

http://e-docs.bea.com/wls/docs70/secmanage/realm.html
http://e-docs.bea.com/wls/docs70/secmanage/realm.html

A web.xml Deployment Descriptor Elements
form-login-config

This is an element within the “login-config” on page A-21.

Use the <form-login-config> element if you configure the <auth-method> to
FORM.

.

security-role

The following table describes the elements you can define within a security-role
element.

Element Required/
Optional

Description

<form-login-page> Required The URI of a Web resource relative to the document root, used to
authenticate the user. This can be an HTML page, JSP, or HTTP
servlet, and must return an HTML page containing a FORM that
conforms to a specific naming convention. For more information, see
“Setting Up Authentication for Web Applications” on page 5-2.

<form-error-page> Required The URI of a Web resource relative to the document root, sent to the
user in response to a failed authentication login.

Element Required/
Optional

Description

<description> Optional A text description of this security role.

<role-name> Required The role name. The name you use here must have a corresponding
entry in the WebLogic-specific deployment descriptor,
weblogic.xml, which maps roles to principals in the security
realm. For more information, see “security-role-assignment” on page
B-2.
A-22 Assembling and Configuring Web Applications

env-entry
env-entry

The optional env-entry element declares an environment entry for an application.
Use a separate element for each environment entry.

The following table describes the elements you can define within an env-entry
element.

ejb-ref

The optional ejb-ref element defines a reference to an EJB resource. This reference
is mapped to the actual location of the EJB at deployment time by defining the
mapping in the WebLogic-specific deployment descriptor file, weblogic.xml. Use a
separate <ejb-ref> element to define each reference EJB name.

Element Required/
Optional

Description

<description> Optional A textual description.

<env-entry-name> Required The name of the environment entry.

<env-entry-value> Required The value of the environment entry.

<env-entry-type> Required The type of the environment entry.
Can be set to one of the following Java types:
java.lang.Boolean

java.lang.String

java.lang.Integer

java.lang.Double

java.lang.Float
Assembling and Configuring Web Applications A-23

A web.xml Deployment Descriptor Elements
The following table describes the elements you can define within an ejb-ref element.

ejb-local-ref

The ejb-local-ref element is used for the declaration of a reference to an enterprise
bean's local home. The declaration consists of:

an optional description

the EJB reference name used in the code of the web application that's
referencing the enterprise bean

the expected type of the referenced enterprise bean

the expected local home and local interfaces of the referenced enterprise bean

optional ejb-link information, used to specify the referenced enterprise bean

Element Required/
Optional

Description

<description> Optional A text description of the reference.

<ejb-ref-name> Required The name of the EJB used in the Web Application. This name is
mapped to the JNDI tree in the WebLogic-specific deployment
descriptor weblogic.xml. For more information, see
“ejb-reference-description” on page B-4.

<ejb-ref-type> Required The expected Java class type of the referenced EJB.

<home> Required The fully qualified class name of the EJB home interface.

<remote> Required The fully qualified class name of the EJB remote interface.

<ejb-link> Optional The <ejb-name> of an EJB in an encompassing J2EE application
package.

<run-as> Optional A security role whose security context is applied to the referenced EJB.
Must be a security role defined with the <security-role>
element.
A-24 Assembling and Configuring Web Applications

ejb-local-ref
The following table describes the elements you can define within an ejb-local-ref
element.

Element Required/
Optional

Description

<description> Optional A text description of the reference.

<ejb-ref-name> Required Contains the name of an EJB reference. The EJB reference is an entry
in the Web application's environment and is relative to the
java:comp/env context. The name must be unique within the Web
application. It is recommended that name is prefixed with ejb/.
For example:
<ejb-ref-name>ejb/Payroll</ejb-ref-name>

<ejb-ref-type> Required The ejb-ref-type element contains the expected type of the
referenced enterprise bean. The ejb-ref-type element must be one
of the following:

<ejb-ref-type>Entity</ejb-ref-type>

<ejb-ref-type>Session</ejb-ref-type>

<local-home> Required Contains the fully-qualified name of the enterprise bean's local home
interface.

<local> Required Contains the fully-qualified name of the enterprise bean's local
interface.
Assembling and Configuring Web Applications A-25

A web.xml Deployment Descriptor Elements
<ejb-link> Optional The ejb-link element is used in the ejb-ref or ejb-local-ref
elements to specify that an EJB reference is linked to an
enterprise bean.

The name in the ejb-link element is composed of a
path name specifying the ejb-jar containing the referenced enterprise
bean with the ejb-name of the target bean appended and separated from
the path name by "#". The path name is relative to the war file
containing the web application that is referencing the enterprise bean.
This allows multiple enterprise beans with the same ejb-name to be
uniquely identified.

Used in: ejb-local-ref, ejb-ref

Examples:

<ejb-link>EmployeeRecord</ejb-link>

<ejb-link>../products/product.jar#ProductEJB</ejb-link>

Element Required/
Optional

Description
A-26 Assembling and Configuring Web Applications

CHAPTER
B weblogic.xml
Deployment Descriptor
Elements

The following sections describe the deployment descriptor elements that you define in
the weblogic.xml file under the root element <weblogic-web-app>:

“auth-filter” on page B-13

“charset-params” on page B-15

“container-descriptor” on page B-14

“context-root” on page B-20

“description” on page B-2

“destroy-as” on page B-21

“init-as” on page B-21

“jsp-descriptor” on page B-11

“preprocessor” on page B-18

“preprocessor-mapping” on page B-18

“reference-descriptor” on page B-3

“security-permission” on page B-19

“security-role-assignment” on page B-2
Assembling and Configuring Web Applications B-1

B weblogic.xml Deployment Descriptor Elements
“session-descriptor” on page B-4

“url-match-map” on page B-17

“virtual-directory-mapping” on page B-16

“weblogic-version” on page B-2

The DOCTYPE header for the weblogic.xml file is as follows:

<!DOCTYPE weblogic-web-app PUBLIC
 "-//BEA Systems, Inc.//DTD Web Application 7.0//EN"
 "http://www.bea.com/servers/wls700/dtd/weblogic700-web-jar.dtd">

You can also access the Document Type Descriptor (DTD) for weblogic.xml at
http://www.bea.com/servers/wls700/dtd/weblogic700-web-jar.dtd.

description

The description element is a text description of the Web Application.

weblogic-version

The weblogic-version element indicates the version of WebLogic Server on which
this Web Application is intended to be deployed. This element is informational only
and is not used by WebLogic Server.

security-role-assignment

The security-role-assignment element declares a mapping between a security
role and one or more principals in the realm, as shown in the following example.
B-2 Assembling and Configuring Web Applications

http://www.bea.com/servers/wls700/dtd/weblogic700-web-jar.dtd

reference-descriptor
<security-role-assignment>
<role-name>PayrollAdmin</role-name>
<principal-name>Tanya</principal-name>
<principal-name>Fred</principal-name>
<principal-name>system</principal-name>

</security-role-assignment>

The following table describes the elements you can define within a
security-role-assignment element.

reference-descriptor

The reference-descriptor element maps a name used in the Web Application to
the JNDI name of a server resource. The reference-description element contains
two elements: The resource-description element maps a resource, for example,
a DataSource, to its JNDI name. The ejb-reference element maps an EJB to its
JNDI name.

Element Required
Optional

Description

<role-name> Required Specifies the name of a security role.

<principal-name> Required Specifies the name of a principal that is defined in the security realm.
You can use multiple <principal-name> elements to map
principals to a role. For more information on security realms, see
Managing WebLogic Security.
Assembling and Configuring Web Applications B-3

http://e-docs.bea.com/wls/docs70/secmanage/index.html

B weblogic.xml Deployment Descriptor Elements
resource-description

The following table describes the elements you can define within a
resource-description element.

ejb-reference-description

The following table describes the elements you can define within a
ejb-reference-description element.

session-descriptor

The session-descriptor element contains the session-param element, which
defines parameters for HTTP sessions, as shown in the following example:

<session-descriptor>
<session-param>

<param-name>
CookieDomain

</param-name>
<param-value>
myCookieDomain

Element Required/
Optional

Description

<res-ref-name> Required Specifies the name of a resource reference.

<jndi-name> Required Specifies a JNDI name for the resource.

Element Required/
Optional

Description

<ejb-ref-name> Required Specifies the name of an EJB reference used in your Web Application.

<jndi-name> Required Specifies a JNDI name for the reference.
B-4 Assembling and Configuring Web Applications

session-descriptor
</param-value>
</session-param>

</session-descriptor>

session-param

The following table describes the valid session parameter names and values you can
define within a session-param element:

Parameter Name Default Value Parameter Value

CookieDomain Null Specifies the domain for which the cookie is valid.
For example, setting CookieDomain to
.mydomain.com returns cookies to any server in
the *.mydomain.com domain.
The domain name must have at least two
components. Setting a name to *.com or *.net is
not valid.
If unset, this parameter defaults to the server that
issued the cookie.
For more information, see
Cookie.setDomain() in the Servlet
specification from Sun Microsystems.

CookieComment Weblogic Server
Session
Tracking Cookie

Specifies the comment that identifies the session
tracking cookie in the cookie file.
If unset, this parameter defaults to WebLogic
Session Tracking Cookie. You may
provide a more specific name for your application.

CookieMaxAgeSecs -1 Sets the life span of the session cookie, in seconds,
after which it expires on the client.
If the value is 0, the cookie expires immediately.
The maximum value is Integer.MAX_VALUE,
where the cookie lasts forever.
If set to -1, the cookie expires when the user exits
the browser.
For more information about cookies, see “Using
Sessions and Session Persistence in Web
Applications” on page 4-1.
Assembling and Configuring Web Applications B-5

B weblogic.xml Deployment Descriptor Elements
CookieName JSESSIONID Defines the session cookie name. Defaults to
JSESSIONID if unset. You may set this to a more
specific name for your application. When using
ProxyByExtension, you may use either the
;jsessionid identifier or the ?jsessionid
identifier to pass rewritten URLs.

CookiePath Null Specifies the pathname to which the browser sends
cookies.
If unset, this parameter defaults to / (slash), where
the browser sends cookies to all URLs served by
WebLogic Server. You may set the path to a
narrower mapping, to limit the request URLs to
which the browser sends cookies.

CookiesEnabled true Use of session cookies is enabled by default and is
recommended, but you can disable them by setting
this property to false. You might turn this option
off to test.

CookieSecure false If set, the client's browser will only send the cookie
back over an HTTPS connection. This ensures that
the cookie ID is secure and should only be used on
websites that exclusively use HTTPS. Once this
feature is enabled, session cookies over HTTP will
no longer work; if your client is directed to a
non-HTTPS location the session will not be sent.

Parameter Name Default Value Parameter Value
B-6 Assembling and Configuring Web Applications

session-descriptor
EncodeSessionIdInQueryParams false By default, when you use the
HTTPServletResponse.encodeURL(URL)
method to encode a URL in the HTTP response,
the session identifier is added to the URL as a path
parameter after the ; character in the URL. This
behavior is defined by the Servlet 2.3 J2EE
specification, implemented as of Version 6.1 of
WebLogic Server.
In Versions 6.0 and previous of WebLogic Server,
however, the default behavior was to add the
session identifier as a query parameter after the ?
character in the URL. To enable this old behavior,
set this session parameter to true.

Note: You typically use this parameter when
WebLogic Server interacts with Web
Servers that do not completely comply
with the Servlet 2.3 specification.

InvalidationIntervalSecs 60 Sets the time, in seconds, that WebLogic Server
waits between doing house-cleaning checks for
timed-out and invalid sessions, and deleting the old
sessions and freeing up memory. Use this
parameter to tune WebLogic Server for best
performance on high traffic sites.
The minimum value is every second (1). The
maximum value is once a week (604,800 seconds).
If unset, the parameter defaults to 60 seconds.

Parameter Name Default Value Parameter Value
Assembling and Configuring Web Applications B-7

B weblogic.xml Deployment Descriptor Elements
PersistentStoreDir session_db If you have set PersistentStoreType to
file, this parameter sets the directory path where
WebLogic Server will store the sessions. The
directory path is either relative to the temp
directory or an absolute path. The temp directory is
either a generated directory under the WEB-INF
directory of the Web Application, or a directory
specified by the context-param
javax.servlet.context.tmpdir.
Ensure that you have enough disk space to store the
number of valid sessions multiplied by the size of
each session. You can find the size of a session by
looking at the files created in the
PersistentStoreDir. Note that the size of
each session can vary as the size of serialized
session data changes.
You can make file-persistent sessions clusterable
by making this directory a shared directory among
different servers.
You must create this directory manually.

PersistentStorePool None Specifies the name of a JDBC connection pool to
be used for persistence storage.

PersistentStoreTable wl_servlet_
sessions

Applies only when PersistentStoreType is set to
jdbc. This is used when you choose a database
table name other than the default.

Parameter Name Default Value Parameter Value
B-8 Assembling and Configuring Web Applications

session-descriptor
PersistentStoreType memory Sets the persistent store method to one of the
following options:

memory—Disables persistent session storage.
file—Uses file-based persistence (See also
PersistentStoreDir, above).
jdbc—Uses a database to store persistent
sessions. (see also PersistentStorePool,
above).
replicated—Same as memory, but session
data is replicated across the clustered servers.
cookie—All session data is stored in a
cookie in the user’s browser.
replicated_if_clustered—If the
Web application is deployed on a clustered
server, the in-effect
PersistentStoreType will be
replicated. Otherwise, memory is the default.

PersistentStoreCookieName WLCOOKIE Sets the name of the cookie used for cookie-based
persistence. For more information, see “Using
Cookie-Based Session Persistence” on page 4-9.

IDLength 52 Sets the size of the session ID.
The minimum value is 8 bytes and the maximum
value is Integer.MAX_VALUE.

Parameter Name Default Value Parameter Value
Assembling and Configuring Web Applications B-9

B weblogic.xml Deployment Descriptor Elements
TimeoutSecs 3600 Sets the time, in seconds, that WebLogic Server
waits before timing out a session, where x is the
number of seconds between a session's activity.
Minimum value is 1, default is 3600, and
maximum value is integer MAX_VALUE.
On busy sites, you can tune your application by
adjusting the timeout of sessions. While you want
to give a browser client every opportunity to finish
a session, you do not want to tie up the server
needlessly if the user has left the site or otherwise
abandoned the session.
This parameter can be overridden by the
session-timeout element (defined in minutes)
in web.xml. For more information, see
“session-config” on page A-11.

JDBCConnectionTimeoutSecs 120 Sets the time, in seconds, that WebLogic Server
waits before timing out a JDBC connection, where
x is the number of seconds between.

URLRewritingEnabled true Enables URL rewriting, which encodes the session
ID into the URL and provides session tracking if
cookies are disabled in the browser.

ConsoleMainAttribute If you enable Session Monitoring in the WebLogic
Server Administration Console, set this parameter
to the name of the session parameter you will use
to identify each session that is monitored.

TrackingEnabled true Tells the webapp to keep track of the session
between requests, in one of the following ways:
SessionCookie
URLEncoding
If this is set to false, the session is not tracked,
cookies coming in with the response are ignored,
and the URL is not encoded.

Parameter Name Default Value Parameter Value
B-10 Assembling and Configuring Web Applications

jsp-descriptor
jsp-descriptor

The jsp-descriptor element defines parameter names and values for JSPs. You
define the parameters as name/value pairs. The following example shows how to
configure the compileCommand parameter. Enter all of the JSP configurations using
the pattern demonstrated in this example:

<jsp-descriptor>
<jsp-param>

<param-name>
 compileCommand
</param-name>
<param-value>
 sj
</param-value>

</jsp-param>
</jsp-descriptor>

JSP Parameter Names and Values

The following table describes the parameter names and values you can define within a
<jsp-param> element.

Parameter Name Default Value Parameter Value

compileCommand javac, or the
Java compiler
defined for a
server under the
configuration
/tuning tab of the
WebLogic
Server
Administration
Console

Specifies the full pathname of the standard Java compiler used to
compile the generated JSP servlets. For example, to use the
standard Java compiler, specify its location on your system as
shown below:
<param-value>

/jdk130/bin/javac.exe
</param-value>

For faster performance, specify a different compiler, such as IBM
Jikes or Symantec sj.
Assembling and Configuring Web Applications B-11

B weblogic.xml Deployment Descriptor Elements
compileFlags None Passes one or more command-line flags to the compiler. Enclose
multiple flags in quotes, separated by a space. For example:
<jsp-param>

<param-name>compileFlags</param-name>
<param-value>"-g -v"</param-value>

</jsp-param>

compilerclass None Name of a Java compiler that is executed in WebLogic Servers’s
virtual machine. (Used in place of an executable compiler such as
javac or sj.) If this parameter is set, the compileCommand
parameter is ignored.

debug None When set to true this adds JSP line numbers to generated class
files to aid debugging.

encoding Default encoding
of your platform

Specifies the default character set used in the JSP page. Use
standard Java character set names (see
http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.htm).
If not set, this parameter defaults to the encoding for your
platform.
A JSP page directive (included in the JSP code) overrides this
setting. For example:
<%@ page contentType="text/html;
charset=custom-encoding”%>

compilerSupports
Encoding

true When set to true, the JSP compiler uses the encoding specified
with the contentType attribute contained in the page directive
on the JSP page, or, if a contentType is not specified, the
encoding defined with the encoding parameter in the
jsp-descriptor.
When set to false, the JSP compiler uses the default encoding for
the JVM when creating the intermediate .java file.

exactMapping true When true, upon the first request for a JSP the newly created
JspStub is mapped to the exact request. If exactMapping is set to
false the webapp container generates non-exact url mapping for
JSPs. exactMapping allows path info for JSP pages.

keepgenerated false Saves the Java files that are generated as an intermediary step in
the JSP compilation process. Unless this parameter is set to true,
the intermediate Java files are deleted after they are compiled.

Parameter Name Default Value Parameter Value
B-12 Assembling and Configuring Web Applications

http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html

auth-filter
auth-filter

The auth-filter element specifies an authentication filter HttpServlet class.

noTryBlocks false If a JSP file has numerous or deeply nested custom JSP tags and
you receive a java.lang.VerifyError exception when
compiling, use this flag to allow the JSPs to compile correctly.

packagePrefix jsp_servlet Specifies the package into which all JSP pages are compiled.

pageCheckSeconds 1 Sets the interval, in seconds, at which WebLogic Server checks to
see if JSP files have changed and need recompiling.
Dependencies are also checked and recursively reloaded if
changed.
If set to 0, pages are checked on every request. If set to -1, page
checking and recompiling is disabled.

precompile false When set to true, WebLogic Server automatically precompiles all
modified JSPs when the Web Application is deployed or
re-deployed or when starting WebLogic Server.

verbose true When set to true, debugging information is printed out to the
browser, the command prompt, and WebLogic Server log file.

workingDir internally
generated
directory

The name of a directory where WebLogic Server saves the
generated Java and compiled class files for a JSP.

compiler javac Sets the JSP compiler for use with this instance of WebLogic
Server.

superclass weblogic.servlet.
jsp.JspBase

Provides a means to override the default superclass for JSPs. The
JSPs are compiled as servlet classes extending from this base
class.

printNulls true When set to true, WebLogic Server prints the string "null".
Setting printNulls to false ensures that WebLogic Server will
print an empty string rather than the "null" string.

Parameter Name Default Value Parameter Value
Assembling and Configuring Web Applications B-13

B weblogic.xml Deployment Descriptor Elements
container-descriptor

The <container-descriptor> element defines general parameters for Web
Applications.

check-auth-on-forward

Add the <check-auth-on-forward/> element when you want to require
authentication of forwarded requests from a servlet or JSP. Omit the tag if you do not
want to require re-authentication. For example:

<container-descriptor>
<check-auth-on-forward/>

</container-descriptor>

Note that the default behavior has changed with the release of the Servlet 2.3
specification, which states that authentication is not required for forwarded requests.

redirect-content-type

If the redirect-content-type element is set, then the servlet container sets that
type on the response for internal redirects (for example, for welcome files).

redirect-content

If the redirect-content element is set, then the servlet container will use that as
the value for the user readable data used in a redirect.
B-14 Assembling and Configuring Web Applications

charset-params
redirect-with-absolute-url

The <redirect-with-absolute-url> element controls whether the
javax.servlet.http.HttpServletResponse.SendRedirect() method
redirects using a relative or absolute URL. Set this element to false if you are using
a proxy HTTP server and do not want the URL converted to a non-relative link.

The default behavior is to convert the URL to a non-relative link.

charset-params

The <charset-params> Element is used to define codeset behavior for non-unicode
operations.

input-charset

Use the <input-charset> element to define which character set is used to read GET
and POST data. For example:

<input-charset>
<resource-path>/foo</resource-path>
<java-charset-name>SJIS</java-charset-name>

</input-charset>

For more information, see “Determining the Encoding of an HTTP Request” on page
3-19.

The following table describes the elements you can define within a <input-charset>
element.

Element Required/
Optional

Description

<resource-path> Required A path which, if included in the URL of a request, signals
WebLogic Server to use the Java character set specified by
<java-charset-name>.
Assembling and Configuring Web Applications B-15

B weblogic.xml Deployment Descriptor Elements
charset-mapping

Use the <charset-mapping> element to map an IANA character set name to a Java
character set name. For example:

<charset-mapping>
<iana-charset-name>Shift-JIS</iana-charset-name>
<java-charset-name>SJIS</java-charset-name>

</charset-mapping>

For more information, see “Mapping IANA Character Sets to Java Character Sets” on
page 3-20.

The following table describes the elements you can define within a
<charset-mapping> element.

virtual-directory-mapping

Use the virtual-directory-mapping element to specify document roots other
than the default document root of the Web application for certain kinds of requests,
such as image requests. All images for a set of Web applications can be stored in a
single location, and need not be copied to the document root of each Web application
that uses them. For an incoming request, if a virtual directory has been specified servlet

<java-charset-name> Required Specifies the Java characters set to use.

Element Required/
Optional

Description

Element Required/
Optional

Description

<iana-charset-name> Required Specifies the IANA character set name that is to be mapped to the
Java character set specified by the <java-charset-name>
element.

<java-charset-name> Required Specifies the Java characters set to use.
B-16 Assembling and Configuring Web Applications

url-match-map
container will search for the requested resource first in the virtual directory and then in
the Web application’s original document root. This defines the precedence if the same
document exists in both places.

Example:

<virtual-directory-mapping>

<local-path>c:/usr/gifs</local-path>

<url-pattern>/images/*</url-pattern>

<url-pattern>*.jpg</url-pattern>

</virtual-directory-mapping>

<virtual-directory-mapping>

<local-path>c:/usr/common_jsps.jar</local-path>

<url-pattern>*.jsp</url-pattern>

</virtual-directory-mapping>

The following table describes the elements you can define within the
virtual-directory-mapping element.

url-match-map

Use this element to specify a class for URL pattern matching. The WebLogic Server
default URL match mapping class is weblogic.servlet.utils.URLMatchMap,
which is based on J2EE standards. Another implementation included in WebLogic
Server is SimpleApacheURLMatchMap, which you can plug in using the
url-match-map element.

Element Required/
Optional

Description

<local-path> Required Specifies a physical location on the disk.

<url-pattern> Required Contains the URL pattern of the mapping. Must follow the rules
specified in Section 11.2 of the Servlet API Specification.
Assembling and Configuring Web Applications B-17

B weblogic.xml Deployment Descriptor Elements
Rule for SimpleApacheURLMatchMap:

If you map *.jws to JWSServlet then

http://foo.com/bar.jws/baz will be resolved to JWSServlet with pathInfo
= baz.

Configure the URLMatchMap to be used in weblogic.xml as in the following
example:

 <url-match-map>

 weblogic.servlet.utils.SimpleApacheURLMatchMap

</url-match-map>

preprocessor

The preprocessor element contains the declarative data of a preprocessor.

The following table describes the elements you can define within the preprocessor
element.

preprocessor-mapping

The preprocessor-mapping element defines a mapping between a preprocessor
and a URL pattern.

Element Required/
Optional

Description

<preprocessor-name> Required Contains the canonical name of the preprocessor.

<preprocessor-class> Required Contains the fully qualified class name of the preprocessor.
B-18 Assembling and Configuring Web Applications

security-permission
The following table describes the elements you can define within the
preprocessor-mapping element.

security-permission

The security-permission element specifies a single security permission based on
the Security policy file syntax. Refer to the following URL for Sun's implementation
of the security permission specification:

http://java.sun.com/j2se/1.3/docs/guide/security/PolicyFiles.html#FileSyntax

Disregard the optional codebase and signedBy clauses.

For example:

<security-permission-spec>

grant { permission java.net.SocketPermission "*", "resolve" };

</security-permission-spec>

where:

permission java.net.SocketPermission is the permission class name.

"*" represents the target name.

resolve indicates the action.

Element Required/
Optional

Description

<preprocessor-name> Required

<url-pattern> Required
Assembling and Configuring Web Applications B-19

http://java.sun.com/j2se/1.3/docs/guide/security/PolicyFiles.html#FileSyntax

B weblogic.xml Deployment Descriptor Elements
context-root

The context-root element defines the context root of this stand-alone Web
Application. If the Web application is part of an EAR, not stand-alone, specify the
context root in the EAR’s application.xml file. A context-root setting in
application.xml takes precedence over context-root setting in
weblogic.xml.

Note that this weblogic.xml element only acts on deployments using the two-phase
deployment model. See "Two-Phase Deployment" in Developing WebLogic Server
Applications.

The order of precedence for context root determination for a Web application is as
follows:

1. Check application.xml for context root; if found, use as Web application’s
context root.

2. If context root is not set in application.xml, and the Web application is being
deployed as part of an EAR, check whether context root is defined in
weblogic.xml. If found, use as Web application’s context root. If the web-app
is deployed standalone, application.xml won't come into play and the
determination for context-root starts at weblogic.xml and defaults to URI if it
is not defined there.

3. If context root is not defined in weblogic.xml or application.xmll, then
infer the context path from the URI, giving it the name of the value defined in the
URI minus the WAR suffix. For instance, a URI MyWebApp.war would be
named MyWebApp.

4. When subsequent Web Applications have context root names that would
duplicate a context root name already in use, a number is appended to the
would-be duplicates. For instance if MyWebApp is already in use, another Web
Application whose context root would be named MyWebApp is instead called
MyWebApp-1, to be followed if necessary by MyWebApp-2, and so on.
B-20 Assembling and Configuring Web Applications

http://e-docs.bea.com/wls/docs70/programming/deploying.html#twophasedeployment
http://e-docs.bea.com/wls/docs70/programming/index.html
http://e-docs.bea.com/wls/docs70/programming/index.html

init-as
init-as

This is an equivalent of <run-as> for init method for servlets. For the <init-as>
element, you must specify a valid prinicipal name. This name should not be a group or
role name.

For example:

 <init-as>

 <servlet-name>FooServlet</servlet-name>

 <principal-name>joe</principal-name>

 </init-as>

destroy-as

This is an equivalent of <run-as> for destroy method for servlets. For the
<destroy-as> element, you must specify a valid prinicipal name. This name should
not be a group or role name.

For example:
 <destroy-as>

 <servlet-name>BarServlet</servlet-name>

 <principal-name>bob</principal-name>

 </destroy-as>
Assembling and Configuring Web Applications B-21

B weblogic.xml Deployment Descriptor Elements
B-22 Assembling and Configuring Web Applications

Index

A
application events 6-1
appliction event listeners 6-1
AuthCookieEnabled 5-4
authentication

and multiple web applications,and
cookies 5-4

basic 5-2
client certificates 5-3
form-based 5-2

C
CGI 3-9
chaining filters 7-5
config.xml 5-4
Configuration

JSP 3-5
JSP tag libraries 3-6
servlets 3-2

cookies 4-3
authentication 5-4
URL rewriting 4-10

customer support contact information xi

D
default servlet 3-8
deploying

Web Application 1-4
deployment

in an Enterprise Application 2-6
overview 2-1

deployment descriptor
editing using Administration Console

1-8
re-deployment 2-4

directory structure 1-5
document root 1-5
documentation, where to find it x
doFilter() 7-5

E
ear 2-6
Enterprise Application

deploying a Web Application in 2-6
error pages 3-9
event listener

declaration 6-4
event listeners

configuring 6-3
events

declaration 6-4
exploded directory format

re-deployment 2-2

F
filter class 7-5
filter mapping 7-4

to a servlet 7-4
URL pattern 7-4
Assembling and Configuring Web Applications I-i

filters
and Web Applications 7-2
chaining 7-5
configuring 7-3
declaration 7-3
mappings 7-4
overview 7-1
uses 7-2
writing a filter class 7-5

H
HTTP session events 6-3
HTTP sessions 4-2

and redeployment 2-4
HTTPS

accessing resources securely 5-4

I
init params 3-4
in-memory replication 4-5

J
jar command

Web Applications 1-5
JSP

configuration 3-5
modifying 2-4
refreshing 2-4
tag libraries 3-6

L
listener

writing a listener class 6-4
listener class 6-4
listeners 6-1

configuring 6-3
HTTP session events 6-3
servlet context events 6-2

M
mapping

filters 7-4
message URL http

//jcp.org/aboutJava/communityprocess/f
inal/jsr154/index.html A-19

modifying components 2-4
modifying JSP 2-4

P
persistence for sessions 4-5
printing product documentation x

R
REDEPLOY file 2-2
re-deployment 2-2

.war archive 2-2
and HTTP sessions 2-4
exploded directory format 2-2
of Java classes 2-4
using administration console 2-3
using REDEPLOY file 2-2
when using auto-deployment 2-2

refreshing
JSP 2-4

response 7-1

S
security

applying programatically in servlet 5-6
authentication 5-2
client certificates 5-3
constraints 5-5
Web Applications 5-1

servlet
configuration 3-2
default servlet 3-8
initialization parameters 3-4
I-ii Assembling and Configuring Web Applications

mapping 3-2
url-pattern 3-2

servlet context events 6-2
servlets

compiling into class files 1-4
session persistence

file-based 4-6
JDBC (database) 4-7
single server 4-6

Session Timeout 4-3
sessions 4-2

cookies 4-3
persistence 4-5
Session Timeout attribute 4-3
setting up 4-2
URL rewriting 4-10
URL rewriting and WAP 4-11

support
technical xi

U
URL rewriting 4-10

W
WAP 4-11
Web Application

configuring external resources 3-13
default servlet 3-8
deploying 1-4
directory structure 1-5
document root 1-5
error page 3-9
jar file 1-5
security 5-1
security constraint 5-5
URI 1-6
war file 1-5

Web applications
compiling servlets into class files 1-4

WEB-INF directory 1-5
welcome pages 3-7
Assembling and Configuring Web Applications I-iii

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Web Applications Basics
	Overview of Web Applications
	Servlets
	JavaServer Pages
	Web Application Directory Structure

	Main Steps to Create a Web Application
	Directory Structure
	URLs and Web Applications
	Web Application Developer Tools
	WebLogic Builder
	Ant Tasks to Create Skeleton Deployment Descriptors
	Web Application Deployment Descriptor Editor
	BEA XML Editor

	2 Deploying Web Applications
	Redeploying a Web Application Using Auto-Deployment
	Redeploying a Web Application in a WAR Archive
	Redeploying a Web Application in Exploded Directory Format
	Touching the REDEPLOY File
	Redeploying with the Administration Console
	Hot-Deployment

	Requirements for Redeploying a Web Application in Production Mode
	Refreshing Static Components (JSP Files, HTML Files, Image Files, Etc.)
	Deploying Web Applications as Part of an Enterprise Application

	3 Configuring Web Application Components
	Configuring Servlets
	Servlet Mapping
	Servlet Initialization Parameters

	Configuring JSP
	Configuring JSP Tag Libraries
	Configuring Welcome Pages
	Setting Up a Default Servlet
	Customizing HTTP Error Responses
	Using CGI with WebLogic Server
	Configuring WebLogic Server to Use CGI
	Requesting a CGI Script

	Serving Resources from the CLASSPATH with the ClasspathServlet
	Configuring Resources in a Web Application
	Configuring External Resources
	Configuring Application-Scoped Resources

	Referencing EJBs in a Web Application
	Referencing External EJBs
	Referencing Application-Scoped EJBs

	Determining the Encoding of an HTTP Request
	Mapping IANA Character Sets to Java Character Sets

	4 Using Sessions and Session Persistence in Web Applications
	Overview of HTTP Sessions
	Setting Up Session Management
	HTTP Session Properties
	Session Timeout
	Configuring Session Cookies
	Using Cookies That Outlive a Session
	Logging Out and Ending a Session

	Configuring Session Persistence
	Common Properties of Session Attributes
	Using Memory-based, Single-server, Non-replicated Persistent Storage
	Using File-based Persistent Storage
	Using a Database for Persistent Storage (JDBC persistence)
	Using Cookie-Based Session Persistence

	Using URL Rewriting
	Coding Guidelines for URL Rewriting
	URL Rewriting and Wireless Access Protocol (WAP)

	5 Configuring Security in Web Applications
	Overview of Configuring Security in Web Applications
	Setting Up Authentication for Web Applications
	Multiple Web Applications, Cookies, and Authentication
	Restricting Access to Resources in a Web Application
	Using Users and Roles Programmatically in Servlets

	6 Application Events and Listeners
	Overview of Application Events and Listeners
	Servlet Context Events
	HTTP Session Events
	Configuring an Event Listener
	Writing a Listener Class
	Templates for Listener Classes
	Servlet Context Listener Example
	HTTP Session Attribute Listener Example

	Additional Resources

	7 Filters
	Overview of Filters
	How Filters Work
	Uses for Filters

	Configuring Filters
	Configuring a Filter
	Configuring a Chain of Filters

	Writing a Filter
	Example of a Filter Class
	Filtering the Servlet Response Object
	Additional Resources

	8 Writing Web Application Deployment Descriptors
	Overview of Web Application Deployment Descriptors
	Tools for Editing Deployment Descriptors
	Writing the web.xml Deployment Descriptor
	Main Steps to Create the web.xml File
	Detailed Steps to Create the web.xml File

	Sample web.xml
	Writing the WebLogic-Specific Deployment Descriptor (weblogic.xml)
	Main Steps to Create the weblogic.xml File
	Detailed Steps to Create the weblogic.xml File

	A web.xml Deployment Descriptor Elements
	icon
	display-name
	description
	distributable
	context-param
	filter
	filter-mapping
	listener
	servlet
	icon
	init-param
	security-role-ref

	servlet-mapping
	session-config
	mime-mapping
	welcome-file-list
	error-page
	taglib
	resource-env-ref
	resource-ref
	security-constraint
	web-resource-collection
	auth-constraint
	user-data-constraint

	login-config
	form-login-config

	security-role
	env-entry
	ejb-ref
	ejb-local-ref

	B weblogic.xml Deployment Descriptor Elements
	description
	weblogic-version
	security-role-assignment
	reference-descriptor
	resource-description
	ejb-reference-description

	session-descriptor
	session-param

	jsp-descriptor
	JSP Parameter Names and Values

	auth-filter
	container-descriptor
	check-auth-on-forward
	redirect-content-type
	redirect-content
	redirect-with-absolute-url

	charset-params
	input-charset
	charset-mapping

	virtual-directory-mapping
	url-match-map
	preprocessor
	preprocessor-mapping
	security-permission
	context-root
	init-as
	destroy-as

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

