
1. Documenting your project using the 
Eclipse help system 
Build easy-to-use and searchable help documentation 

Arthur Barr, Software engineer, IBM  

Summary:  The Eclipse Platform, which provides a very powerful IDE, includes its 
own help system based on an XML table of contents referencing HTML files. What isn't 
immediately obvious is that you don't have to write Eclipse plug-ins to use it. Any 
project can use a cut-down version of the platform to provide professional, easy-to-use, 
and searchable documentation. This documentation system has been successfully used 
on a number of IBM projects, including those as large as the IBM® WebSphere® 
Application Server. 

Tags for this article:  documentation, eclipse, research, xml 

When you access the Eclipse help system (through Help > Help Contents), you are 
actually starting up an embedded Apache Tomcat server. A window based on a Web 
browser is then opened, pointing to the correct page on that server (see Figure 1). 
Documentation is provided with a collapsible index on the left side and HTML 
documentation on the right, and can be searched (thanks to the Apache Lucene search 
engine). Since Tomcat is used, you are not limited to HTML. For example, you can use 
JSPs to make your documentation change dynamically (though we will discuss later a 
possible reason to avoid doing this). 



 
Figure 1. Example of Eclipse help 

 

The Hello, World of documentation plug-ins 

Documentation is split into "books," and you can have as many books as you like in one 
instance of the help system. Each book is written as an Eclipse plug-in, but thankfully, 
the work involved here is minimal. To write a simple plug-in, you will need a 
plugin.xml file to describe your plug-in, which should look like Listing 1. 

 
Listing 1. Plug-in definition 
<plugin name="Sample Documentation Plug-in" id="com.ibm.sample.doc" 
   version="1.0.0" provider-name="IBM"> 
   <extension point="org.eclipse.help.toc"> 
      <toc file="toc.xml" primary="true" /> 
   </extension> 
</plugin> 

 

Change the plug-in's name, id, version, and provider-name to values appropriate to 
your project. The extension point of org.eclipse.help.toc identifies this as a plug-in 
to the help system. The file toc.xml is referenced as being the table of contents for this 
plug-in. This file will provide the data for the hierarchical information in the left pane of 
the Eclipse help window. A simple file contains something like that shown below. 



 
Listing 2. Table of contents definition 
<toc label="Sample Documentation"> 
    <topic label="My Section" href="mySection.html"> 
        <topic label="Foo" href="foo.html"/> 
        <topic label="Bar" href="bar.html"/> 
    </topic> 
</toc> 

 

Packaging the plug-in 

Each topic element is represented in the final documentation by an entry in the 
navigation list. These topics can be nested (they can contain more topics), and each one 
points to an HTML or JSP file. Once you've done this, all you need to do is package 
everything in the structure shown in Figure 2 (notice that the plug-in directory name 
matches the id and version attributes of the plug-in defined in the plugin.xml). 

 
Figure 2. Plug-in directory structure 

 

As a convenience, and to reduce file size, Eclipse allows you to keep all your actual 
documentation (the HTML files) in a ZIP file called doc.zip, so you could use the 
directory structure shown in Figure 3. 

 
Figure 3. Alternative plug-in directory structure 

 

Viewing your documentation 

The easiest way to test your plug-in is to simply drop the entire directory (as above) into 
the plugins directory of an installed Eclipse Platform, then launch Eclipse and select 
Help > Help Contents. You will get a help window with your plug-in added (similar to 
the one in Figure 1). 

Using the IDE is all very well for testing, but to be useful without the IDE, the 
documentation needs to be more accessible, so what we really want is to run a process 
in the background that lets us connect to it with a browser. This mode of operation is 
known as an InfoCenter (see Figure 4). Instructions for starting an InfoCenter process 
(basically Apache Tomcat) are included with the Eclipse help system documentation 
(see Resources). Note that there also instructions on how to pare down the Eclipse 
system to give you just the bits you need. 



 
Figure 4. InfoCenter in action 

 

Handling large tables of contents 

If your project has more than a few people working on it or has a large documentation 
set, updating a single table of contents (toc.xml) file can become impractical. You can 
change this by adding a link element into your topic in the main toc.xml file (see 
Listing 3 for an example). 

 
Listing 3. Table of contents definition 
<toc label="Sample Documentation"> 
    <topic label="My Section" href="mySection.html"> 
        <topic label="Foo" href="foo.html"/> 
        <topic label="Bar" href="bar.html"> 
            <link toc="bar-toc.xml" /> 
        </topic> 
    </topic> 
</toc> 

 

The file bar-toc.xml is just another table of contents, and should take exactly the same 
format as any other toc.xml file. When the documentation is viewed, there will be no 
difference between using this method and simply including the additional topic 
elements directly. 

 



Back to top 

Generating a stand-alone documentation set 

Of course, using the Eclipse help system is all well and good if you don't mind 
distributing the 20-plus MB of code required, but this isn't realistic for smaller projects. 
Hosting an InfoCenter on a central server allows people to connect remotely. People 
receive all the benefits of using the Eclipse help system (such as searching), but people 
without connectivity are left stranded. So, in addition to using a hosted InfoCenter, it's 
useful to include the plain HTML in a downloadable package. As long as you haven't 
used any server-side technologies such as JSPs, you can easily generate an HTML table 
of contents to replace the XML one used by Eclipse. Which is why we have eXtensible 
Stylesheet Language Transformations (XSLT). 

XSLT is a technology used to transform one form of XML to another, such as XHTML 
(a stricter, XML version of HTML). XSLT provides a rich and powerful language to 
perform transformations, and is the topic of many books and articles on its own, so we 
won't go into detail here. Listing 4 shows an example of a simple transformation of a 
toc.xml file, rendering the entries as nested HTML lists. Note that this particular 
transformation creates a single HTML file for the contents of the whole documentation 
set, which will be unwieldy for large numbers of files. Therefore, this XSLT will not 
work if you have split your table of contents across multiple files. 

 
Listing 4. Sample XSLT to generate HTML table of contents 
<?xml version="1.0"?> 
<xsl:stylesheet 
   version="1.1" 
   xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> 
 
<xsl:output method="html" indent="no" encoding="ISO-8859-1" /> 
 
<xsl:template match="toc"> 
   <html> 
      <head /> 
      <body> 
         <h1><xsl:value-of select="@label" /></h1> 
         <ul> 
            <xsl:apply-templates /> 
         </ul> 
      </body> 
   </html> 
</xsl:template> 
 
<xsl:template match="topic"> 
   <li> 
      <xsl:choose> 
         <xsl:when test="@href"> 
            <!-- Only add a hyperlink when there is something to link 
to -> 
            <xsl:element name="a"> 
               <xsl:attribute name="href"> 
                  <xsl:value-of select="@href" /> 
                  </xsl:attribute> 
               <xsl:value-of select="@label" /> 
            </xsl:element> 



         </xsl:when> 
         <xsl:otherwise> 
            <xsl:value-of select="@label" /> 
         </xsl:otherwise> 
      </xsl:choose> 
 
      <!-- If there are any nested topics, then start a new sub-list -
> 
      <xsl:if test="descendant::topic"> 
         <ul> 
            <xsl:apply-templates/> 
         </ul> 
      </xsl:if> 
   </li> 
</xsl:template> 
 
</xsl:stylesheet> 

 

Processing the toc.xml file through an XSLT processor, such as Apache Xalan using the 
above XSLT, yields an HTML file that looks something like Figure 5, when viewed 
with a browser. 

 
Figure 5. Generated index.html 

 

 

Back to top 

Conclusion 

Using the Eclipse help system is a fairly painless way to develop professional-looking, 
searchable documentation that will amaze your friends and colleagues. If you don't have 
a requirement for a stand-alone documentation set, then you don't even need to go near 



XSLT; you can write just two simple XML files and be on the road to documentation 
happiness. Off you go.  

2. Installing the help system as an 
infocenter 
You can allow your users to access the help system over the Internet or an intranet, by 
installing the infocenter and the documentation plug-ins on a server. Clients view help 
by navigating to a URL, and the help system is shown in their web browser. The 
infocenter help system can be used both for client applications and for web applications, 
either of which can have their help accessed remotely. All features of help system 
except infopops and active help are supported.  

The infocenter help system allows passing number of options that can be used to 
customize various aspects of the infocenter. The following options are supported: 

• -eclipsehome eclipseInstallPath - specifies Eclipse installation directory. This 
directory is a parent to "plugins" directory and eclipse executable. The option 
must be provided, when current directory from which infocenter is launched, is 
not the same as Eclipse installation directory. 

• -data instanceArea - specifies a path that Eclipse can use to write instance data. 
The value can be an absolute path of a directory, or a path relative to Eclipse 
installation directory. The option must be provided when Eclipse is installed in 
the read only location, or has been customized to override osgi.instance.area or 
osgi.instance.area.default properties.  

• -host helpServerHost - specifies host name of the interface that help server will 
use. It overrides host name specified in the application server plugin preferences. 

• -port helpServerPort - specifies port number that help server will use. It 
overrides port number specified in the application server plugin preferences. 

• -locales localeList - specifies a list of locales that infocenter will recognize and 
provide a customized content for. If the option is not specified, infocenter will 
build navigation, and index documents for each preferred locale of the browsers 
accessing the infocenter. When the option is present, locales from browser 
requests will be matched with locales in the list. If browser preferred locale does 
not exist in the list, but its language part does, it will be used. Subsequently, 
additional browser locales in decreased order of preference will be matched 
against the list. If none of the browser locales (or its language part) matches any 
locale on the list, the client will be served content in the default locale - server 
locale or locale passed with -nl option. For example using options  

-nl en -locales de en es fr it ja ko pt_BR zh_CN zh_TW 

will cause infocenter operating in 10 locales. All other locales will receive 
content for en locale. 



• -dir ltr or -dir rtl - forces left-to-right or right-to-left rendering direction of help 
UI in the browser for all languages. By default direction is determined based on 
the browser locale. 

• -noexec - indicates that Eclipse executable should not be used. You may need to 
use this option when running on a platform for which Eclipse executable is not 
available. 

• Additionally, most options accepted by Eclipse executable can be passed. They 
are especially useful during debugging and for applying customization to 
Eclipse. For example, passing options  

-vmargs -Xmx256M  

increases memory available to the infocenter and will allow serving a larger 
book collection. 

3. Installation/packaging 

These steps are for the help system integrator and are not meant to address all the 
possible scenarios. It is assumed that all your documentation is delivered as Eclipse 
plug-ins and, in general, you are familiar with the eclipse help system. 

1. Download the Eclipse Platform Runtime Binary driver from www.eclipse.org. 
2. Install (unzip) the driver in a directory, d:\myApp. This will create an eclipse 

sub-directory, d:\myApp\eclipse that contains the code required for the Eclipse 
platform (which includes the help system). 

4. How to start or stop infocenter from command 
line 

The org.eclipse.help.standalone.Infocenter class has a main method that you can use to 
launch infocenter from a command line. The command line arguments syntax is: 

-command start | shutdown | [-eclipsehome eclipseInstallPath] [-data 
instanceArea] [-host helpServerHost] [-locales localeList] [-port 
helpServerPort] [-dir rtl] [-noexec] [platform options] [-vmargs 
JavaVMarguments] 

To start an infocenter on port 8081 issue a start command by running 

java -classpath 
d:\myApp\eclipse\plugins\org.eclipse.help.base_3.1.0.jar 
org.eclipse.help.standalone.Infocenter -command start -eclipsehome 
d:\myApp\eclipse -port 8081 

To shut the infocenter down issue a shutdown command by running 

java -classpath 
d:\myApp\eclipse\plugins\org.eclipse.help.base_3.1.0.jar 
org.eclipse.help.standalone.Infocenter -command shutdown -eclipsehome 
d:\myApp\eclipse 



5. Using the infocenter 

Start the web server. Point a web browser to the path "help" web application running on 
a port specified when starting the infocenter.  On the machine the infocenter is installed, 
this would be http://localhost:8081/help/.  

6. How to start or stop infocenter from Java 

When including infocenter as part of another application, it may be more convenient to 
start it and stop using Java APIs instead of using system commands. Follow the steps if 
it is the case: 

1. Make sure d:\myApp\eclipse\plugins\org.eclipse.help.base_3.1.0.jar is on your 
app classpath. The class you use to start, and shut down the infocenter 
isorg.eclipse.help.standalone.Infocenter. 

2. Create an array of String containing options that you want to pass to the 
infocenter. Typically, the eclipsehome and port options are needed.  

String[] options = new String[] { "-eclipsehome", 
"d:\\myApp\\eclipse" , "-port", "8081" };  

3. In your application, create an instance of the Help class by passing the options. 

Infocenter infocenter = new Help(options);  

4. To start the help system:  

helpSystem.start(); 

5. To shut the infocenter down: 

helpSystem.shutdown();  

7. Making infocenter available on the web 

Eclipse contains a complete infocenter and does not require other server software to run. 
However, in unsecure environment like Internet, it is recommended infocenter is not 
accessed directly by clients, but is made available through an HTTP server or an 
application server. Most servers come with modules or servlets for delegating certain 
request to other web resources. For example, one may configure a proxy module of 
Apache HTTP Server to redirect requests made to 
http://mycompany.com/myproduct/infocenter to http://internalserver:8081/help that 
runs an infocenter. Adding the lines  

LoadModule proxy_module modules/ApacheModuleProxy.dll 
ProxyPass /myproduct/infocenter http://internalserver:8081/help 
ProxyPassReverse /myproduct/infocenter http://internalserver:8081/help 

to conf/httpd.conf file of Apache server running mycompany web site accomplishes 
this.  



Some versions of Apache HTTP server, may contain AddDefaultCharset directive 
enabled in configuration file. Remove the directive or replace with 

AddDefaultCharset Off 

to have browsers display documents using correct character set.  

8. Running multiple instance of infocenter 

Multiple instances of infocenter can be run on a machine from one installation. Each 
started instance must use its own port and be provided with a workspace, hence -port 
and -data options must be specified. The instances can serve documentation from 
different set of plug-ins, by providing a valid platform configuration with -
configuration option.  

If -configuration is not used and configuration directory is shared among multiple 
infocenter instances, with overlapping set of locales, it must be ensured that all search 
indexes are created by one infocenter instance before another instance is started. 
Indexes are saved in the configuration directory, and write access is not synchronized 
across infocenter processes.  

9. [Optional] Installing a minimal set of plug-ins 

The infocenter does not require the entire  Eclipse Platform package. It is possible to run 
the infocenter with the following plug-ins (located in the  eclipse\plugins directory): 

org.apache.lucene 
org.eclipse.core.runtime 
org.eclipse.help 
org.eclipse.help.appserver 
org.eclipse.help.base 
org.eclipse.help.webapp 
org.eclipse.osgi 
org.eclipse.tomcat 
org.eclipse.update.configurator 

Some documentation plug-ins may have dependencies on other plug-ins, usually by 
specifying required plug-ins in their plugin.xml. The dependent plug-ins need to be 
installed on the infocenter as well. Additionally, plug-ins that were designed for earlier 
than 3.0 version of Eclipse implicitly require an 
org.eclipse.core.runtime.compatibility being present plug-in to work.  

Infocenter plug-ins can be updated without restarting the infocenter, using commands 
explained in Updating a running infocenter from command line topic. To use this 
functionality, the minimal set of plug-ins must include org.eclipse.update.core 
plug-in.  

See Help System Preferences for more information on customizing help system. 

 


